Soil Mechanics testing systems

In line with its continual program of product research and development, CONTROLS S.R.L. reserves the right to alter specifications to equipment at any time.

In all sections of civil engineering and particularly in soil mechanics, the engineer during the design stage must ensure that the analysis of soil properties relate directly to the relevant foundation or structure. Using procedures involving extracting, examining and testing representative samples the engineer can compute a model very close to the real situation. In recent years we have seen a significant contribution to experimental analysis resulting from more sophisticated testing procedures, updating of many International Standards and publication of good testing manuals and procedures.

WYKEHAM FARRANCE is one of the longest established manufacturing companies in the world of Geotechnical Testing Systems. It has always been synonymous with high technology and quality. A close working relationship with several premier Universities in Europe ensures a flow of new ideas for development of new testing techniques and systems.

WYKEHAM FARRANCE was originally formed in 1941 by Geoff Wykeham and Geoff Farrance. The original company is now part of the CONTROLS GROUP as the Soil Mechanics Division. This alliance and synergy, the international network of companies, groups and distributors provide complete customer service and technical advice including planning, installation, training and maintenance for all types of laboratories.

This catalogue concerns a limited but important part of our production line which includes other testing equipment for Asphalt/bituminous mixture and bitumen, Concrete and Cement and Soil mechanics.
To design foundations, embankments and other soil structures, Geotechnical Engineers require methods of assessing the engineering properties of soils. For over 60 years Wykeham Farrance has been at the forefront of the development of test systems designed to give engineers the information they require.

Some of the more complex phenomena that occur in soils have often been difficult to recreate in the laboratory: seismic activity, vibration, unsaturated condition, control of principal stresses etc. are areas
which have proven difficult to replicate, despite their importance being understood. This was partly due to the lack of test systems capable of reproducing these effects and the complexity of test systems that were developed to carry out such work. A number of advanced computer/software controlled systems allow the geotechnical engineer to perform the most complex test regimes via a user-friendly software interface.
Since 1941

PIONEERS IN ADVANCED SOIL TESTING

William Farrance

Wykeham Farrance

Wykeh
Soil Mechanics Testing Systems

Index

Consolidation
Front loading oedometer ............................ 6
ACE, Automatic computerized oedometer .... 8
Hydrocon hydraulic consolidation cells ......... 10
Continuous consolidation apparatus .......... 12

Direct/Residual shear
DIGISHEAR, direct/residual digital shear machine .......................... 14
AUTOSHEAR, direct/residual shear testing machine, digital control .......... 16
SHEARMATIC, digital automatic direct/residual shear machine ................... 18
SHEARMATIC 300, Large digital shear box apparatus ......................... 20
Consolidation bench for shear box .......... 21
Laboratory vane apparatus ..................... 21
TORSHEAR, digital ring shear apparatus .... 23

Triaxial testing
Introduction ........................................ 24
Types of triaxial test: test description .......... 26
Triaxial load frames ................................ 28
Banded triaxial cell and accessories .......... 33
Standard triaxial cell and accessories ......... 36
Double-Wall triaxial cell for unsaturated ....... 38
Pressure system ..................................... 40
Water de-airing water system ................. 42
Analogue measurement for triaxial system .... 44
Electronic measurement for triaxial system .. 46
Bender elements ..................................... 48
Local strain transducers ........................... 50
Specimen consolidation .......................... 51
Determination of permeability of normal and contaminated soil sample ....... 53

AUTOTRIAX 2
Introduction ........................................ 54
Data acquisition and control unit .............. 56
Pressure and volume controller ................. 58
Air pressure controller and water volume change for unsaturated testing ......... 59
Triaxial test automatic control and processing software ......................... 60
Typical configurations ............................ 64

Data acquisition system
GEODATAS, Data acquisition system ........ 66
Calibration equipment ............................. 68

Dynamic testing systems
Introduction ........................................ 70
DYNATRIAX, dynamic triaxial .......................... 74
IPC GLOBAL FACT, dynamic triaxial ............... 80
RESONANT COLUMN ................................ 82
CYCLIC SIMPLE SHEAR .......................... 85
Front Loading Oedometer

Standards
- BS 1377:5
- ASTM D2435
- ASTM D3877
- ASTM D4546
- AASHTO T216
- NF P94-090-1
- NF P94-091
- UNE 103-405
- UNE 103-602

26-WF0302
Front loading oedometer

The oedometer consolidation test determines the rate and magnitude of consolidation of a soil specimen restrained laterally and subjected to a number of successive vertical load increments.

The oedometer apparatus has a rigid aluminium alloy frame which avoids distortion under load. The lever arm assembly is supported in precision self-aligning bearings. Consolidation cells, dial gauge/displacement transducer, weight sets and bench are not included and have to be ordered separately. See Accessories.

Technical specifications
- Max loading (using 11:1 lever arm ratio):
  1848 kg, corresponding to 9.061 MPa (92.40 kgf/cm²) on a 20 cm² specimen (50.47 mm diameter)
- Overall dimensions: 500 x 200 x 750 mm (height without hanger x width x length)
- Weight: 21 kg (approx.)

Accessories
- Weight sets

26-WF0230/C2
Weight set, 64 kg in total, comprising: 2 x 0.25, 1 x 0.5, 1 x 1, 1 x 2, 3 x 5 and 7 x 8 kg weights.

Electronic measuring devices
- 30-WF6207
  Linear potentiometric transducer, 10 mm travel.
  Note: In case displacement transducer is supplied complete with data acquisition system, then a traceable calibration certificate on request.

Data acquisition and processing system
- 30-WF6016/T1
  Consolidation Geo-Analysis template conforming, to BS 1377:5.
- 30-WF6016/T8
  Consolidation Geo-Analysis template conforming, to ASTM D2435.

Mechanical (analogue) Measuring device
- 30-WF6401
  Dial gauge, 10 mm travel, 0.002 mm resolution.

Permeability attachment
- 26-WF0338/A
  Permeability attachment with 50 ml graduated burette. Complete with clamps, stand and rubber hose for connection to the cell. Weight 4 kg.

Consolidation bench
- 26-WF0312
  Bench for up to three oedometers. Weight 30 kg

Main features
- Rigid aluminium alloy frame
- 3 lever arm position: 9:1, 10:1, 11:1. Max loading 1848 kg
- Can be fitted with traditional dial gauge or linear transducer for connection to the Geodatalog data acquisition and processing system

Three oedometers (26-WF0302) complete with cells and electronic displacement transducers (30-WF6207), mounted on a consolidation bench (26-WF0312) and connected to the Geodatalog and PC (not included)

(1) As an alternative to the standard dial gauges.

Slotted steel weights

Exploded view of consolidation cell 26-WF0320
Consolidation cells and spare parts
Suitable for both fixed ring oedometer consolidation and falling head permeability tests. The cell is constructed of aluminium and comes complete with all the parts illustrated in the exploded view.

<table>
<thead>
<tr>
<th>Code</th>
<th>Specimen Dimensions (dxh) mm</th>
<th>Specimen area cm²</th>
<th>Cell dim. (dxh) mm</th>
<th>Weight kg</th>
<th>Calibration disc, code 26-</th>
<th>Upper porous disc code 26-</th>
<th>Lower porous disc code 26-</th>
<th>Cutting ring code 26-</th>
</tr>
</thead>
<tbody>
<tr>
<td>26-WF0320</td>
<td>50.47 x 20</td>
<td>20.00</td>
<td>139 x 74</td>
<td>1.3</td>
<td>WF0320/9</td>
<td>WF0320/4</td>
<td>WF0325/10</td>
<td>WF0320/3</td>
</tr>
<tr>
<td>26-WF0321</td>
<td>63.50 x 20</td>
<td>31.67</td>
<td>139 x 74</td>
<td>1.3</td>
<td>WF0321/9</td>
<td>WF0321/4</td>
<td>WF0326/10</td>
<td>WF0321/3</td>
</tr>
<tr>
<td>26-WF0325</td>
<td>71.40 x 20</td>
<td>40.00</td>
<td>139 x 74</td>
<td>1.3</td>
<td>WF0325/9</td>
<td>WF0325/4</td>
<td>WF0326/10</td>
<td>WF0325/3</td>
</tr>
<tr>
<td>26-WF0326</td>
<td>75.00 x 20</td>
<td>44.16</td>
<td>139 x 74</td>
<td>1.3</td>
<td>WF0326/9</td>
<td>WF0326/4</td>
<td>WF0326/10</td>
<td>WF0326/3</td>
</tr>
<tr>
<td>26-WF0335</td>
<td>112.80 x 25</td>
<td>100.00</td>
<td>200 x 74</td>
<td>3.0</td>
<td>WF0335/9</td>
<td>WF0335/4</td>
<td>WF0335/10</td>
<td>WF0335/3</td>
</tr>
</tbody>
</table>

Weight application guide
This information is intended to make it easy to select the weight set that is appropriate for the cell size, the beam ratio and the maximum load applied.

<table>
<thead>
<tr>
<th>Code</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26-WF0302</td>
<td>1</td>
<td>Front loading oedometer</td>
</tr>
<tr>
<td>26-WF032 X(1)</td>
<td>1</td>
<td>Consolidation cell</td>
</tr>
<tr>
<td>26-WF0230/C2</td>
<td>1</td>
<td>Weight set, 64 kg in total</td>
</tr>
<tr>
<td>30-WF6401</td>
<td>1</td>
<td>Dial gauge, 10 mm x 0.002 mm divisions</td>
</tr>
<tr>
<td>26-WF0312</td>
<td>1</td>
<td>Consolidation bench for up to 3 oedometers</td>
</tr>
</tbody>
</table>

(1) To be selected

Typical consolidation configurations
Standard, with analogue dial gauge

<table>
<thead>
<tr>
<th>Code</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26-WF0302</td>
<td>1</td>
<td>Front loading oedometer</td>
</tr>
<tr>
<td>26-WF032 X(1)</td>
<td>1</td>
<td>Consolidation cell</td>
</tr>
<tr>
<td>26-WF0230/C2</td>
<td>1</td>
<td>Weight set, 64 kg in total</td>
</tr>
<tr>
<td>30-WF6401</td>
<td>1</td>
<td>Dial gauge, 10 mm x 0.002 mm divisions</td>
</tr>
<tr>
<td>26-WF0312</td>
<td>1</td>
<td>Consolidation bench for up to 3 oedometers</td>
</tr>
</tbody>
</table>

(1) To be selected

With digital data acquisition and processing

<table>
<thead>
<tr>
<th>Code</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26-WF0302</td>
<td>1</td>
<td>Front loading oedometer</td>
</tr>
<tr>
<td>26-WF032 X(1)</td>
<td>1</td>
<td>Consolidation cell</td>
</tr>
<tr>
<td>26-WF0230/C2</td>
<td>1</td>
<td>Weight set, 64 kg in total</td>
</tr>
<tr>
<td>30-WF6402</td>
<td>1</td>
<td>Linear potentiometric transducer, 10 mm travel</td>
</tr>
<tr>
<td>30-WF6008</td>
<td>1</td>
<td>Set of four cables</td>
</tr>
<tr>
<td>30-WF616/T1</td>
<td>1</td>
<td>Geo-Analysis template to BS or Geo-Analysis template to ASTM</td>
</tr>
<tr>
<td>26-WF0312</td>
<td>1</td>
<td>Consolidation bench for up to 3 oedometers</td>
</tr>
</tbody>
</table>

(1) To be selected
Fully automatic PC-controlled test execution

Three conditions for the automatic switch to the next step are available: time, swelling, rate of secondary consolidation.

Testing can continue 24 hours a day, 7 days a week without interruption giving greater throughput of tests with a considerable cost decrease

Automated loading eliminates negative factors such as operator error and manual handling of dead weights

15 kN maximum loading capacity, 10 mm travel displacement transducer

Real-time data and graph display

Single ACE software installation controls up to 60 units

Test management software supplied including calibration facility

High speed LAN network communication

ACE
Automatic Computerized Oedometer

Main features

- Fully automatic PC-controlled test execution
- Three conditions for the automatic switch to the next step are available: time, swelling, rate of secondary consolidation.
- Testing can continue 24 hours a day, 7 days a week without interruption giving greater throughput of tests with a considerable cost decrease.
- Automated loading eliminates negative factors such as operator error and manual handling of dead weights.
- 15 kN maximum loading capacity, 10 mm travel displacement transducer.
- Real-time data and graph display.
- Single ACE software installation controls up to 60 units.
- Test management software supplied including calibration facility.
- High speed LAN network communication.

Standards:
BS 1377-3 | ASTM D2435 | ASTM D3877 | ASTM D4546 | AASHTO T216 |
NF P94-090-1 | NF P94-091 | UNE 103-405 | UNE 103-602

26-WF3120
Automatic Computerized Oedometer

110-240 V, 50-60 Hz, 1 ph.

The oedometer consolidation test is used to determine the rate and magnitude of consolidation of a soil specimen restrained laterally and subjected to a number of successive increments of vertical load.

The ACE (Automatic Computerized Oedometer) consists of a small and compact load frame housing two coaxial pneumatic cylinders: the smaller one for low loads and the other for higher loads, with automatic switching from one to the other when needed. There are two analogue channels: one for the displacement transducer and the other for the load cell with closed-loop feedback, which controls application of the required pressure using a high precision pneumatic servo-actuator.

Test parameters are pre-programmed and saved in the ACE software by the operator, including the test end, which can be programmed on a time or increment basis. The software can control up to 60 ACE units from a single PC, giving the operator the choice of controlling single or multiple units.

Once the software is installed (mandatory) with the first ACE unit, it is possible to extend the control of further units just by enabling the communication without additional interventions and costs. An IP address is given to each unit for the LAN communication: system modularity is ensured for subsequent integrations.

ACE software allows to set up, save and recall different load/unload sequences: for each of them applied pressure steps, recording mode, time of application, swelling control and secondary consolidation rate limit can be defined by the user.

Besides the traditional time limit control for transition from one step of pressure to another, further automatic controls are included in the software with great advantage to the users, as:

- **Swelling control**: if the specimen under test tends to expand, a swelling limit can be pre-set: in case the pre-set limit is exceeded, the system will automatically skip to the next loading step.

- **Secondary consolidation rate control**: the system will automatically skip to next loading step if the secondary consolidation rate is lower than a pre-set limit.

Test results are recorded and displayed in real time and calculations are performed automatically. Test data can be processed using the proper Geo-Analysis Templates conforming to BS or ASTM Standards.

The frame can accept all standard consolidation cells, from 50.47 to 112.80 mm diameter.

Consolidation cells, Geo-Analysis templates and test software are not included. See Accessories. PC is not included.

Technical specifications:

- **Maximum vertical force**: 15 kN - 30 kN available on request
- **Load cell capacity**: 15 kN
- **Displacement transducer**: 10 mm maximum travel
- **Maximum air pressure supply**: 10 bar. (If the air pressure source is not available in the laboratory, our air compressor model 86-D2015, 50 l capacity may be used.
- **Specimen size**: from 50.47 to 112.80 mm diameter using our consolidation cells. See Accessories.
- **Software**: can control up to 60 ACE units (not included, see Accessories)
- **PC connection**: LAN cable (included)
- **Measurement accuracy**: better than 1%
- **Overall dimensions**: 280 x 300 x 600 mm (w x d x h)
- **Weight approx.**: 25 kg (approx.)
Software:
ACE software operates as interface for all testing processes: the possibility to
pre-set all test conditions and let each oedometer unit to work independently
and to perform the whole test automatically is the great advantage of ACE testing
system, ensured by the dedicated software developed by the geotechnical experts.

Calibration and verification facilities for force and displacement transducers are included in the
software. Txt files are automatically generated for calibration reports. Each system is factory calibrated
but verifications have to be ensured by the users at least once a year.

The screenshot beside shows an example of test sequences setting, where swelling monitoring and
control option is activated.

For each step, test data are displayed in real time and recorded according to the pre-set logging mode.
Testing unit status is continuously displayed and time scale can be switched immediately from linear to
logarithmic and square root.

Modularity concept: up to 60 ACE units can be connected to the same PC via LAN and controlled by the same software 26-WF3120/SOF.

Accessories
Test software
26-WF3120/SOF
ACE automatic computerized oedometer test software

Consolidation cells (see page 7)
Permeability accessory (optional)
26-WF0338/B
Permeability attachment with 50 ml graduated burette.

Geo-Analysis templates for data processing
30-WF6016/T1
Consolidation Geo-Analysis template conforming to BS1377:5 Standard.
30-WF6016/T8
Consolidation Geo-Analysis template conforming to ASTM D2435 Standard.

Hub
26-WF4645
LAN Hub with 8 ports for Wykeham Farrance devices. LAN cable from hub to PC is included.

Air supply
See page 41
Hydraulic Consolidation Cells

**Standards**  BS 1377:6

**26-WF0345**
Hydrocon, hydraulic consolidation cell
for 100 mm diameter samples

The Hydrocon hydraulic consolidation apparatus is used to determine the magnitudes and rates of consolidation of soil specimens of relatively low permeability by hydraulic pressure. This type of cell overcomes the complexity usually associated with hydraulic oedometers and allows more information to be gathered from the soil sample. Pore water pressure is measured using a pressure transducer and vertical settlement using a linear strain transducer (or a dial gauge). As the Hydrocon is a confined consolidation system, it is possible to measure both pore and back pressure during testing. The coefficient of consolidation can be directly computed from pore pressure dissipation tests. In addition it is possible to make an accurate permeability measurement by generating a vertical flow of water through the sample. The complete test apparatus includes the Hydrocon cell, pressure system, water de-airing system and measuring system (manual, or electronic with the Geodatalog data acquisition system. See the table showing the configuration of a complete system.)

The Hydrocon is also available for testing unsaturated samples. See model 26-WF0346.

**Technical specifications**
- Manufactured from anodized light alloy, complete with three valves, one porous base disc and one top loading porous disc. Three support legs for stability.
- Suitable for 100 mm diameter soil samples
- Maximum working pressure: 3500 kPa
- Overall dimensions: 260 x 450 mm (diameter x height)
- Weight: 10 kg (approx.)

**Accessories**
See the table configuration of a complete testing system.

**Typical configuration of a complete system**
Manual or electronic option, with pore and back pressure facilities

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>26-WF0345</td>
<td>Hydrocon, hydraulic consolidation cell</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4330</td>
<td>Triaxial panel, two way</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4330/2</td>
<td>Digital pressure gauge for 28-WF4330</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4320</td>
<td>Bladder air/water interface</td>
<td>2</td>
</tr>
<tr>
<td>28-WF4320/1</td>
<td>Spare bladder for 28-WF4320</td>
<td>1</td>
</tr>
<tr>
<td>86-D2015</td>
<td>Laboratory air compressor</td>
<td>1</td>
</tr>
<tr>
<td>28-WF2016/2</td>
<td>Air filter for 86-D2015 air compressor</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4191</td>
<td>Nylon tubing, OD 8 mm / ID 6 mm, 10 m coil</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4220/A</td>
<td>De-airing tank, 7 l capacity</td>
<td>1</td>
</tr>
<tr>
<td>86-D2005</td>
<td>Air drying unit</td>
<td>1</td>
</tr>
<tr>
<td>86-D0819</td>
<td>Silica gel desiccator, 1 kg bottle</td>
<td>2</td>
</tr>
<tr>
<td>86-D2001</td>
<td>Vacuum pump</td>
<td>1</td>
</tr>
<tr>
<td>86-D2064</td>
<td>Rubber tubes</td>
<td>2</td>
</tr>
<tr>
<td>28-WF4225</td>
<td>Valve panel for de-airing tank</td>
<td>1</td>
</tr>
</tbody>
</table>

**Measuring system - manual option**

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-WF6401</td>
<td>Dial gauge, 10 mm travel, 0.002 mm subdivisions</td>
<td>1</td>
</tr>
<tr>
<td>28-WF6300</td>
<td>Pressure transducer, 0–10 bar</td>
<td>1</td>
</tr>
<tr>
<td>28-WF6310</td>
<td>De-airing block</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4450</td>
<td>Digital readout unit for pore press. measurement</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4400</td>
<td>Double burette volume change apparatus</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4400/1</td>
<td>Red dye hydrocarbon soluble pack for 500 ml</td>
<td>1</td>
</tr>
</tbody>
</table>

**Measuring system - electronic option**

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-WF6207</td>
<td>Linear displacement transducer, 10 mm travel</td>
<td>1</td>
</tr>
<tr>
<td>28-WF6300</td>
<td>Pressure transducer, 0–10 bar</td>
<td>1</td>
</tr>
<tr>
<td>28-WF6310</td>
<td>De-airing block</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4410</td>
<td>Automatic volume change apparatus</td>
<td>1</td>
</tr>
<tr>
<td>30-WF6044</td>
<td>Transducer extension cable, 12 m</td>
<td>3</td>
</tr>
<tr>
<td>82-P9006/ELT</td>
<td>Set of four cables</td>
<td>1</td>
</tr>
<tr>
<td>30-WF6008</td>
<td>Geodatalog 8-channel data acquisition unit</td>
<td>1</td>
</tr>
<tr>
<td>30-WF6016/T12</td>
<td>Hydrocon consolidation Geo-Analysis template</td>
<td>1</td>
</tr>
</tbody>
</table>
### Hydrocon SWCC consolidation apparatus

The Hydrocon SWCC consolidation apparatus is used to determine the magnitude and rate of settlement and pressure of unsaturated soil specimens. Because of the low permeability of some materials, performing a drying and wetting stage can take several weeks. The Hydrocon SWCC cell is a flexible soil testing apparatus capable of applying uniaxial pressures of up to 3500 kPa to a 100 mm diameter specimen. Its base is fitted with a High Air Entry Stone (HAES) which enables a soil/water characteristic suction curve to be obtained. This type of stone allows water to pass through but not air so that the soil matrix potential can be controlled at various values: 1, 2, 5, 10 and 15 bar. During a test it is possible to load the soil specimen in such a way that the overburden pressure in the field is recreated, whilst measuring the chamber and pore water pressure using a pressure transducer and the vertical settlement using a linear strain transducer.

#### Technical specifications

- Same as 26-WF0345, but complete with four valves, compensator ring and 2 bar High Air Entry Stone sealed on aluminium ring.

#### Typical configuration of a complete system

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Q.ty</th>
</tr>
</thead>
<tbody>
<tr>
<td>26-WF0346</td>
<td>Hydrocon, SWCC hydraulic consolidation cell with 2 bar High Air Entry Stone and compensator ring</td>
<td>1</td>
</tr>
</tbody>
</table>

#### Pressure system

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Q.ty</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-WF4331</td>
<td>Triaxial panel, three way</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4330/2</td>
<td>Digital pressure gauge for 28-WF4331</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4320</td>
<td>Bladder air/water interface, 1000 kPa maximum</td>
<td>2</td>
</tr>
<tr>
<td>28-WF4320/1</td>
<td>Spare bladder for 28-WF4320</td>
<td>1</td>
</tr>
<tr>
<td>86-D2015</td>
<td>Laboratory air compressor</td>
<td>1</td>
</tr>
<tr>
<td>28-WF2016/2</td>
<td>Air filter for 86-D2015 air compressor</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4191</td>
<td>Nylon tubing, OD 8 mm / ID 6 mm, 10 m coil</td>
<td>1</td>
</tr>
</tbody>
</table>

#### Water de-airing system

same as indicated on page 10

#### Measuring system - electronic option

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Q.ty</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-WF6207</td>
<td>Linear displacement transducer, 10mm travel</td>
<td>1</td>
</tr>
<tr>
<td>28-WF6300</td>
<td>Pressure transducer 0-10 bar</td>
<td>3</td>
</tr>
<tr>
<td>28-WF6310</td>
<td>De-airing block</td>
<td>3</td>
</tr>
<tr>
<td>28-WF4410</td>
<td>Automatic volume change apparatus</td>
<td>1</td>
</tr>
<tr>
<td>30-WF6044</td>
<td>Transducer extension cable, 12 m</td>
<td>5</td>
</tr>
<tr>
<td>82-P9008/ELT</td>
<td>Set of four cables</td>
<td>2</td>
</tr>
<tr>
<td>30-WF6008</td>
<td>Geodatalog 8, data acquisition unit</td>
<td>1</td>
</tr>
<tr>
<td>30-WF6016/T13</td>
<td>Hydrocon SWCC Geo-Analysis Template</td>
<td>1</td>
</tr>
</tbody>
</table>

#### Alternative Pressure system for pressures up to 3500 kPa

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Q.ty</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-WF4312</td>
<td>Oil and water constant pressure system, 3500 kPa</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4302</td>
<td>High viscosity oil, 5 kg</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4191</td>
<td>Nylon tubing, OD 8 mm / ID 6 mm, 10 m coil</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4050/1</td>
<td>Normal action coupling for fitting lines to cell</td>
<td>1</td>
</tr>
<tr>
<td>28-WF6302</td>
<td>Pressure transducer 0-35 bar</td>
<td>3</td>
</tr>
</tbody>
</table>
Continuous consolidation cell

Standards  ASTM D4186

26-WF0360
Continuous consolidation cell (CRS)

Main features

- Continuous monitoring of test data (vertical load, pore pressure, vertical compression) and detailed plotting of the consolidation curve
- Relatively short time to perform the test: less than half the time of an incremental loading consolidation test
- More accurate and reliable evaluation of consolidation and compressibility parameters
- Particularly suitable for cohesive saturated soils

Technical specifications

- Specimen size: 63.5 x 25.4 mm (diameter x height)
- Maximum working pressure: 800 kPa
- Maximum vertical load: 50 kN
- Overall dimensions: 240 x 410 mm (approx.) (diameter x height)
- Weight: 10 kg (approx.)

Additional AUTOTRIAX 2 software for performing fully automatic CRS (constant rate of strain) tests is available on request. See section 60

Typical Configuration of a complete system

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>26-WF0360</td>
<td>Continuous consolidation cell</td>
<td>1</td>
</tr>
<tr>
<td>26-WF0360/1</td>
<td>Cutting ring</td>
<td>1</td>
</tr>
<tr>
<td>28-WF0490</td>
<td>Nylon tubing: OD 6 mm / ID 4 mm, 20 m coil</td>
<td>1</td>
</tr>
<tr>
<td>28-WF0490/1</td>
<td>Flaring tool</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4330</td>
<td>Triaxial panel, two way</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4330/2</td>
<td>Digital pressure gauge for 28-WF4330</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4320</td>
<td>Bladder air/water interface</td>
<td>2</td>
</tr>
<tr>
<td>28-WF4320/1</td>
<td>Spare bladder for 28-WF4320</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4005</td>
<td>Triaxial load frame, 50 kN capacity</td>
<td>1</td>
</tr>
<tr>
<td>30-WF4459</td>
<td>De-airing block</td>
<td>1</td>
</tr>
<tr>
<td>28-WF6301</td>
<td>Pressure transducer, 0-20 bar</td>
<td>1</td>
</tr>
<tr>
<td>30-WF6207</td>
<td>Linear transducer, 10 mm travel</td>
<td>1</td>
</tr>
<tr>
<td>30-WF0375/T</td>
<td>Load cell, 50 kN capacity</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4220/A</td>
<td>De-airing tank, 7 l capacity</td>
<td>1</td>
</tr>
<tr>
<td>86-D2001</td>
<td>Vacuum pump</td>
<td>1</td>
</tr>
<tr>
<td>86-D2064</td>
<td>Rubber tubes</td>
<td>2</td>
</tr>
<tr>
<td>86-D2005</td>
<td>Air drying unit</td>
<td>1</td>
</tr>
<tr>
<td>86-D0819</td>
<td>Silica gel desiccator, 1 kg bottle</td>
<td>2</td>
</tr>
<tr>
<td>28-WF4225</td>
<td>Valve panel for de-airing tank</td>
<td>1</td>
</tr>
<tr>
<td>86-D2015</td>
<td>Laboratory air compressor</td>
<td>1</td>
</tr>
<tr>
<td>28-WF2016/2</td>
<td>Air filter for 86-D2015 air compressor</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4191</td>
<td>Nylon tubing, OD 8 mm / ID 6 mm, 10 m</td>
<td>1</td>
</tr>
<tr>
<td>82-P9008/ELT</td>
<td>Set of four cables</td>
<td>1</td>
</tr>
<tr>
<td>30-WF6008</td>
<td>Geodatalog, 8-channels data acquisition unit</td>
<td>1</td>
</tr>
<tr>
<td>30-WF6016/T6</td>
<td>CRS Geo-Analysis template</td>
<td>1</td>
</tr>
<tr>
<td>30-WF6044</td>
<td>Transducer extension cable, 12 m</td>
<td>3</td>
</tr>
</tbody>
</table>

The purpose of the Constant Rate of Strain (CRS) oedometer test is to determine the magnitude and rate of consolidation of a soil restrained laterally, drained axially from the top and subjected to controlled-strain loading.

The 26-WF0360 continuous consolidation cell is used to perform this test, with other equipment such as a triaxial load frame, pressure system, data acquisition and processing components and other accessories required to complete the system. See configuration of a complete system.

The cell features a double chamber for two different and independent water pressure systems, with pore pressure measured at the base of the specimen by a pressure transducer and drainage connected to the top of the specimen.
Direct/residual shear testing machines

Standards
ASTM D3080 | AASHTO T236 | BS 1377:7 | NF P94 071-1/2 | CEN-ISO/TS 17892-10

If a failure occurs in the ground (for example for deep excavations performed without retaining structures), a slip circle surface is generally created within the soil. After a first immediate general failure, the soil will stabilize, since the soil can still offer a residual strength. Different laboratory testing methods have been developed and standardized:

Direct shear tests
In the traditional direct shear test the soil specimen (either undisturbed, remoulded or compacted) is placed in a rigid metal box and subjected to a normal constant stress. The metal box consists of two halves that can slide horizontally each other and will apply an increasing horizontal force to the lower part of the specimen while the upper part is reacting against the shearing action. From the measurement of this shearing action the shear strength of the soil is calculated.

Direct/residual shear test with cycles (forward & reverse)
The main limitation of the conventional shear box is that it is not possible to apply the shearing action for large displacement of the soil specimen by repeating several time the shearing action on the same surface of the specimen already subjected to the shearing action of the traditional direct shear test. This type of test is standardized as multi-reversal direct shear.

Both tests can be performed, at different level of automation, with all our Shear testing machines:

DIGISHEAR
27-WF2060 DIGISHEAR,
with digital control and display of speed (see page 14)

AUTOSHEAR
27-WF2160 AUTOSHEAR,
with digital speed control and data acquisition control system (see page 16)

SHEARMATIC
27-WF2180 SHEARMATIC,
digital automatic version with pneumatic automatic loading by a closed-loop control system (see page 18)

SHEARMATIC 300
27-WF2304 SHEARMATIC 300
digital automatic version 100 kN cap. with shear box assembly for 300 mm square samples. (see pages 18-20)

Residual shear tests by the ring shear apparatus
Standards
ASTM D6467 | BS 1377:7

The ring shear apparatus, also known as Bromhead Apparatus, has been developed to overcome the main disadvantage of the multi-reversal shear test, where the shearing action is reversed, causing the continuous re-orientation of the soil particles. In the ring shear apparatus the specimen is annular shaped and subjected to an unlimited rotational displacement from the lower part, while the upper part is reacting against a couple of load rings or load cells. The main advantages of this test is that large displacements make reliable the measurement of the residual strength of a soil specimen, where the area of contact on the shear plane is maintained constant. The disadvantage is that the specimen is tested only under remoulded conditions.

This test can be performed with the following machine:

TORSHEAR
27-WF2202 TORSHEAR
Bromhead ring shear apparatus. (see page 22)
**DIGISHEAR**

Direct/residual Shear Machine

**Standards**

- ASTM D3080 | AASHTO T236 | BS 1377:7
- NF P094 071-1/2 | CEN-ISO/TS 17892-10

**27-WF2060 DIGISHEAR, direct/residual shear machine**

Digital control and display of speed. 110-240V, 50-60 Hz, 1 ph.

The DIGISHEAR machine, with digital control and display of speed, is driven by a high resolution stepper motor and worm reduction unit and can accommodate all standard-sized specimens up to 10 cm square and 10 cm diameter. Vertical load is applied directly to the specimen via a loading yoke and weight hanger, and can be increased by using the counterbalanced lever-arm loading hanger which amplifies the load by a factor of 10. The loading yoke can hold up to 50 kg of weights so that the total load on the specimen can reach 500 N, or 5000 N when the lever-arm hanger is used.

The machine is supplied without a shear box assembly, slotted steel weights and load/displacement measurement apparatus, which can be analogue (load ring and dial gauges), or electronic with data acquisition and processing (load cell, displacement transducers and data acquisition system). All these items have to be selected and ordered separately - see Accessories.

**Technical specifications**

- Speed range: adjustable from 0.00001 to 9.99999 mm/min (preset via firmware)
- Maximum shear force: 5000 N
- Maximum vertical load: 500 N or 5000 N using 10:1 lever-arm device
- Speed drive ratio: stepper motor 1/10000 resolution
- Horizontal travel: preset via firmware up to 20 mm
- Displacement limits: controlled by optical safety switch
- Digital display: 4-row / 20-character LCD. Easy to operate with the membrane keyboard
- Specimen sizes: 60 and 100 mm square; 50, 60, 63.5 and 100 mm diameter
- Overall dimensions: 953 x 387 x 1180 mm (w x d x h)
- Weight: 120 kg (approx.)
**Accessories**

### Shear box assemblies

These shear box assemblies are designed to be used with our 27-WF2060 Digishear, 27-WF2160 Autoshear and 27-WF2180 Shearmatic shear testing machines. The box is manufactured from brass and is designed to confine the specimen whilst permitting free drainage of the surrounding water. The complete assembly consists of a square box with a rigid-walled round or square hole, with a loading pad, base plate, 2 plain grid plates, 2 perforated grid plates and 2 porous plates. 

Weight: from 2.5 to 4 kg (approx.)

- **27-WF0215/B**
  Shear box assembly for 60 mm square specimens.
- **27-WF0216/B**
  Shear box assembly for 100 mm square specimens.
- **27-WF0217/B**
  Shear box assembly for 50 mm diameter specimens.
- **27-WF0218/B**
  Shear box assembly for 60 mm diameter specimens.
- **27-WF0219/B**
  Shear box assembly for 63.5 mm diameter specimens.
- **27-WF0222/B**
  Shear box assembly for 100 mm diameter specimens.

### Mechanical (analogue) measuring devices

- **27-WF1002/ST**
  Load ring, 2000 N capacity, with adapter.

### Electronic measuring devices

- **27-WF0377/ST**
  Load cell, 5 kN cap., complete with adapters
- **30-WF6207**
  Linear potentiometric transducer, 10 mm travel, for vertical deformation, complete with mounting block
- **30-WF6208**
  Linear potentiometric transducer, 25 mm travel, for horizontal displacement, complete with mounting block

**Note:** In case displacement transducers and load cell are supplied complete with data acquisition system, then a traceable calibration certificate is available on request.

### Accessories for shear box assemblies

<table>
<thead>
<tr>
<th>Box code, 27-</th>
<th>WF0215/B</th>
<th>WF0216/B</th>
<th>WF0217/B</th>
<th>WF0218/B</th>
<th>WF0219/B</th>
<th>WF0222/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample cutter*</td>
<td>WF0215/B</td>
<td>WF0216/B</td>
<td>WF0217/B</td>
<td>WF0218/B</td>
<td>WF0219/B</td>
<td>WF0222/B</td>
</tr>
<tr>
<td>Extrusion dolly*</td>
<td>WF0215/B</td>
<td>WF0216/B</td>
<td>WF0217/B</td>
<td>WF0218/B</td>
<td>WF0219/B</td>
<td>WF0222/B</td>
</tr>
<tr>
<td>Loading pad</td>
<td>WF0215/B</td>
<td>WF0216/B</td>
<td>WF0217/B</td>
<td>WF0218/B</td>
<td>WF0219/B</td>
<td>WF0222/B</td>
</tr>
<tr>
<td>Base plate</td>
<td>WF0215/B</td>
<td>WF0216/B</td>
<td>WF0217/B</td>
<td>WF0218/B</td>
<td>WF0219/B</td>
<td>WF0222/B</td>
</tr>
<tr>
<td>Porous plate**</td>
<td>WF0215/B</td>
<td>WF0216/B</td>
<td>WF0217/B</td>
<td>WF0218/B</td>
<td>WF0219/B</td>
<td>WF0222/B</td>
</tr>
<tr>
<td>Plain grid plate**</td>
<td>WF0215/B</td>
<td>WF0216/B</td>
<td>WF0217/B</td>
<td>WF0218/B</td>
<td>WF0219/B</td>
<td>WF0222/B</td>
</tr>
<tr>
<td>Perforated grid plate**</td>
<td>WF0215/B</td>
<td>WF0216/B</td>
<td>WF0217/B</td>
<td>WF0218/B</td>
<td>WF0219/B</td>
<td>WF0222/B</td>
</tr>
</tbody>
</table>

* Not supplied with the shear box. They must be ordered separately. ** Two pieces are supplied with each shear box.

### Spare parts for shear box assemblies

<table>
<thead>
<tr>
<th>Box code, 27-</th>
<th>WF0215/B</th>
<th>WF0216/B</th>
<th>WF0217/B</th>
<th>WF0218/B</th>
<th>WF0219/B</th>
<th>WF0222/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load ring, 2000 N capacity, with adapter.</td>
<td>30-WF6401</td>
<td>30-WF6402</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dial gauge for measuring vertical deformation, 10 mm travel, 0.002 mm resolution.</td>
<td>30-WF6016/T2</td>
<td>30-WF6016/T9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dial gauge for measuring horizontal deformation, 30 mm travel, 0.01 mm resolution.</td>
<td>30-WF6016/T2</td>
<td>30-WF6016/T9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Data acquisition and processing system

**Note:** For more information on the Geodatalog, see page 64.

- **30-WF6016/T2**
  Direct and residual shear Geo-Analysis template BS
- **30-WF6016/T9**
  Direct and residual shear Geo-Analysis template ASTM

### Weight sets

- **27-WF0230/C3**
  Weight set, 37.5 kg in total, comprising: 2 x 0.25, 2 x 0.5, 2 x 1, 3 x 2, 3 x 4 and 2 x 8 kg weights.
- **27-WF0230/C4**
  Weight set, 34 kg in total, comprising: 2 x 0.5, 2 x 1, 1 x 2 and 3 x 10 kg weights. (additional)

#### Single slotted weights

- **27-WF0270/A**
  Slotted steel weight, 0.25 kg ± 3 g.
- **27-WF0271/A**
  Slotted steel weight, 0.5 kg ± 3 g.
- **27-WF0272/A**
  Slotted steel weight, 1 kg ± 5 g.
- **27-WF0273/A**
  Slotted steel weight, 2 kg ± 5 g.
- **27-WF0274/A**
  Slotted steel weight, 4 kg ± 5 g.
- **27-WF0275/A**
  Slotted steel weight, 8 kg ± 10 g.
- **27-WF0276/A**
  Slotted steel weight, 5 kg ± 5 g.
- **27-WF0277/A**
  Slotted steel weight, 10 kg ± 10 g.
The AUTOSHEAR machine is controlled by a microprocessor system which reads and processes horizontal force and displacement readings and manages the motor and safety limits via a closed-loop control system. The unit provides the following important features:

- Automatic running of tests
- Closed-loop control of test speed
- Large, monochromatic, 240 x 128-pixel graphic display for viewing and recording data in real time
- Different calibration functions (linear and polynomial)
- Language selection
- Travel and cycles programmable using a 10 button membrane keyboard with 4 specific interactive icons
- Continuous monitoring and display of horizontal force, vertical and horizontal displacement
- Maximum horizontal displacement limit (20 mm) controlled by mechanical and optical safety switch
- Different recording modes, including linear, exponential (square root) and logarithmic
- High capacity data memory (up to 1000 lines of data)
- RAM memory with battery back-up with clock/calendar, operative even when the unit is switched off

Standards
ASTM D3080 | AASHTO T236 | BS 1377:7 | NF P094 071-1/2 | CEN-ISO/TS 17892-10

27-WF2160
AUTOSHEAR, direct/residual shear machine
digital control of speed and data acquisition control system. 110-240V, 50-60 Hz, 1 ph.

Detail of shear box carriage made of high resistance techno-polymeric material
Soil Mechanics | Direct/Residual Shear

The design of the horizontal loading system provides rigid linear alignment of the loading ram, shear box and force measurement system, ensuring that the horizontal shearing force is transmitted along the shearing plane of the specimen.

Techno-polymeric material of excellent quality and high resistance has been used for the carriage of the shear box. It offers excellent resistance to corrosion and wear and tear, and it is resistant to all chemicals found in soil specimens. The carriage is lightweight and easy to clean.

The machine is supplied without load cell, transducers for horizontal and vertical displacement, shear box assembly and weights. All these items have to be ordered separately - see Accessories. The machine can also be fitted with mechanical (analogue) measuring devices.

The microprocessor control system allows the machine to work as an automatic stand-alone unit: the test measurements (force and displacement) are directly displayed and stored in the unit memory according to pre-set recording modes. The PC is only required once the test is completed, to download the test data via the RS-232 port. The data can be processed using the Direct and residual shear Geo-Analysis templates - see Accessories.

Technical specifications
- Speed range: 0.00001 – 11.00000 mm (preset via firmware)
- Maximum shear force: 5000 N
- Maximum vertical load: 500 N or 5000 N using 10:1 lever-arm device
- Speed drive ratio: stepper motor 1/10000 resolution
- Horizontal travel: preset via firmware up to 20 mm
- Displacement limits: controlled by optical safety switch
- Maximum shear cycles: up to 10 (forward and reverse)
- Digital: large 240 x 128 pixel display
- Specimen sizes: 60 and 100 mm square; 50, 60, 63.5 and 100 mm diameter
- Overall dimensions: 953 x 387 x 1180 mm (w x d x h)
- Weight: 120 kg (approx.)

Accessories
Electronic measuring devices
27-WF0377/ST
Load cell, 5 kN capacity, complete with adapters.

Data processing software
30-WF6016/T2
Direct and residual shear Geo-Analysis templates conforming to BS 1377:7.

30-WF6016/T9
Direct shear Geo-Analysis template conforming to ASTM D3080.

Shear box assemblies
For a general description and related accessories and spares, see page 55

Weight set
See page 15

Mechanical (analogue) measuring devices
See page 15

Example of a direct shear test processed with the 30-WF6016/T2 Geo-Analysis template (BS standard): the top plot shows shear stress versus horizontal displacement; the bottom plot shows change in specimen height versus horizontal displacement

30-WF6207
Linear potentiometric transducer, 10 mm travel for vertical deformation, complete with mounting block.

30-WF6208
Linear potentiometric transducer, 25 mm travel for horizontal displacement, complete with mounting block.

Note: Traceable calibration certificate is available on request.
This microprocessor-based advanced model is a stand-alone machine, driven by a high-resolution stepper motor with epicyclical reduction gear with reduced backlash. A pneumatic closed-loop system with a high-performance pressure regulator is incorporated for the automatic application of vertical pressure, with the main advantage that manual loading of dead weights is eliminated.

Techno-polymeric material of high quality and resistance has been used for the carriage of the shear box. It offers excellent resistance to corrosion and wear and tear, and it is resistant to all chemicals found in soil specimens. The carriage is light-weight and easy to clean. The microprocessor system reads and processes the force, vertical pressure and displacement readings, and manages the motor, the pressure valve, the safety system and the test steps through the closed-loop system.

The machine is supplied complete with the following electronic transducers:

- ±5 kN capacity load cell, bi-directional type (compression and tension), nominal sensitivity 2 mV/V, accuracy ±0.03%
- 10 mm displacement transducer, 1 kOhm nominal resistance, ±0.25% linearity, 0.002 mm repeatability
- 25 mm displacement transducer, 1 kOhm nominal resistance, ±0.25% linearity, 0.002 mm repeatability
- 1000 kPa pressure transducer, 0.1 kPa accuracy, nominal sensitivity 2 mV/V

Note: The Shear box assemblies have to be selected and ordered separately. The machine requires a compressed air supply of 10 bar maximum pressure. For a suitable air compressor, laboratory model, see Accessories.

### Standards

- ASTM D3080
- AASHTO T236
- BS 1377:7
- NF P094 071-1/2
- CEN-ISO/TS 17892-10

### Main features

- Automatic pneumatic application of pre-set consolidation steps (up to 50)
- Automatic test management from consolidation to failure
- No dead weights or lever-arm required
- Infinitely variable speed from 0.00001 to 11.00000 mm/min
- Linear connection between shear box, drive unit and load cell for transmission of the horizontal force along the shearing plane, instead of the classic “swan neck”
- High-resistance techno-polymeric carriage
- Possibility to set different speeds and travel (forward and reverse) in the residual shear tests
- Each single step of vertical pressure can be applied instantaneously or by means of a linear ramp over a pre-set time interval

The Shearmatic unit, along with the ACE Automatic oedometer and Autotriax 2, Automatic Triaxial test system, makes up a unique equipment for providing complete automation of a Consolidation, Shear and Triaxial Soil Mechanic laboratory.

The unit provides the following important features:

- **Automatic test termination:**
  - When a pre-set horizontal load or displacement is reached
  - After a pre-set duration of the shear stage (from 1 minute to about 7 days)

- **Safety micro switch:**
  - Optical for zero and end of travel
  - Mechanical for maximum horizontal displacement

- **Application of vertical load:**
  - Pneumatic piston with a high-resolution regulator, motor-driven via Automax electronic board with closed-loop control via a 10 bar pressure transducer

- **Input channels:**
  - One for a load cell transducer with 130,000-point resolution
  - Two for potentiometric displacement transducers

- **3 calibration modes for transducers:**
  - 1st step linear
  - 2nd degree polynomial
  - Up to 10 steps linearization

**Data recording:**
- Consolidation stage: vertical pressure and displacement
- Shear stage: horizontal force and displacement, vertical pressure and displacement

**Recording mode:**
- Linear, exponential (square root) and logarithmic
- At pre-set intervals of recorded data

**Recorded data capacity:**
- 2000 lines of data

**Blocks of memory:**
- Up to 25

**Communication protocol:**
- Selectable via RS-232 serial port:
  - ASCII for use with Windows Hyper Terminal or CONTROLS for use with 82-Q0800/TRM
Technical specifications
- Motor: high-accuracy stepper motor 1/10000 resolution
- Test speed: infinitely variable from 0.00001 to 11.00000 mm/min
- Maximum horizontal force: 5 kN
- Maximum vertical force: 8 kN = 800 kPa
- Maximum travel: 20 mm
- Weight: 100 kg (approx.)

Accessories
Shear box assemblies
See page 55

Air compressors
86-D2015
Laboratory air compressor, 10 bar maximum pressure, 50 litre capacity, 230 V, 50 Hz, 1 ph.
86-D2015/2
As above but 220 V, 60 Hz, 1 ph.

Set up of the consolidation steps
Each row of this table represents a pressure step which is defined by:
- Initial pressure (set point) that is equal to the pressure of the previous step
- Final pressure (target) will be reached automatically at a constant rate
- Pre-set time to pass from initial to final pressure
For example, rows 3 and 4 of this table mean that:
- The pressure will be increased instantaneously (time = 0) from 100 to 300 kPa
- The pressure of 300 kPa will be maintained for the time of consolidation (in this case 500 minutes).

Direct shear test
This screen shows the status of and information about the test, and displays real-time values of:
- Horizontal force
- Vertical pressure (maintained constant)
- Horizontal displacement
- Vertical displacement

Example of a direct shear test processed with the 30-WF6016/T9 Geo-Analysis template (ASTM standard): the top plot shows the consolidation (vertical deformation versus time), the bottom plot shows the shearing (shear stress versus relative lateral displacement).
**SHEARMATIC 300**

Large Shear testing machine

---

### main features

- Ideal for testing shale, industrial slag, brick rubble, and colliery spoils
- Sample size 150 and 300 mm square
- 100 kN vertical pressure and horizontal force
- Infinitely variable speed control from 0.00001 to 11.00000 mm/min
- Automatic hydraulic application of pre-set consolidation steps (up to 50)
- Automatic test management from consolidation to failure.
- Linear connection between shear box, drive unit and load cell for transmission of the horizontal force along the shearing plane
- Possibility to set different speeds and travel (forward and reverse) in the residual shear tests
- Each single step of axial force can be applied instantaneously or by means of a linear ramp over a pre-set time interval

---

**Standards**

ASTM D3080 | AASHTO T236 | BS 1377:7 | NF P094 071-1/2 | CEN-ISO/TS 17892-10

**27-WF2304**

SHEARMATIC 300, large automatic shear box apparatus

100 kN capacity, with shear box assembly for 300 mm square samples. 230 V, 50 Hz, 1 ph.

27-WF2304/1

As above but 110 V, 60 Hz, 1 ph

The SHEARMATIC 300 automatic machine is ideal for soil and other materials that contain large particles of up to 20 mm largest dimension. Sample sizes up to 300 mm square can be tested, with inserts also allowing the testing of smaller sample sizes.

Vertical pressure for consolidating the sample is applied and controlled by an automatically programmable closed-loop hydraulic system and horizontal deformation is driven by a high-resolution stepper motor. The machine is entirely managed by the software of a microprocessor unit that reads and processes the force, vertical pressure and displacement readings, and manages the motor, the vertical hydraulic loading system and the test steps, through closed-loop systems. The user interface is a ten-key scratchproof membrane keyboard with large monochromatic graphic display.

The machine works as an automatic stand-alone unit: the test measurements (horizontal and vertical force and displacement) are directly displayed and stored in the unit’s memory according to the pre-set recording modes. The PC is only required once the test is completed, to download the test data via the RS-232 port. The data can be processed using the 30-WF6016/T2 or 30-WF6016/T9 Direct and residual shear Geo-Analysis templates - see Accessories.

By using a large sample it is possible to gain a more representative indication of shear strength. Furthermore, the large shear box can be used to obtain the angle of friction between many materials. Particular applications include the construction of earth dams and other embankment work.

The machine includes a shear box, two 100 kN load cells and two linear potentiometric transducers, 100 and 50 mm travel, with mounting brackets.

**Technical specifications**

- Sample size: up to 300 mm square. Can be reduced to 150 mm using 27-WF2304/1 150 mm sample insert. See Accessories.
- Shear and vertical force: 100 kN
- Speed range: infinitely variable from 0.00001 to 11.00000 mm/min
- Maximum travel: 75 mm
- Consolidation steps: up to 50
- Data acquisition: RS-232 serial port for use with Direct and residual Geo-Analysis templates (see Accessories).
- Power rating: 2000 W
- Overall dimensions: 1470 x 758 x 1570 mm approx. (w x d x h)
- Weight: 800 kg (approx.)

**Accessories**

27-WF2304/1

150 mm square sample insert for 300 mm shearbox.

Data processing software

30-WF6016/T2

Direct and residual shear Geo-Analysis templates conforming to BS 1377.7.

30-WF6016/T9

Direct shear Geo-Analysis template conforming to ASTM D3080.
Consolidation bench

27-WF0226
Consolidation bench
for shear boxes

Where only one direct shear machine is available, this bench can be used to maintain constant loads on up to three shear box specimens, in order to reduce the testing time when more than one sample has to be tested.

It consists of a steel frame with three locating plates, three loading yokes and weight hangers, and three lever-arm loading hangers which can be used to extend the range of applied pressure by 10:1. The frame can hold up to 3 shear boxes and requires displacement transducers or dial gauges to measure the settlement and a set of weights to apply the load. It is suitable for all standard shear boxes, 27-WF0215/B to 27-WF0222/B (not included).

Technical specifications
- 3 loading yokes and hangers
- 3 lever-arm loading devices with a load amplification ratio of 10:1
- Holds up to 3 shear boxes
- Dimensions: 2310 x 500 x 1215 mm (w x d x h)
- Weight: 120 kg (approx.)

Data acquisition and processing system

Note For more information on the Geodatalog and Geo-Analysis templates, see page 66

Weight sets/Slotted steel weights
See page 15

Accessories

Mechanical (analogue) measuring devices

30-WF6401 Dial gauge, 10 mm travel, 0.002 mm resolution.

Electronic measuring devices

30-WF6207 Linear potentiometric transducer, 10 mm travel.

Laboratory Vane Apparatus

27-WF1730
Laboratory vane apparatus

The laboratory vane apparatus is based on an original concept of the Transport and Road Research Laboratory of the United Kingdom. It can be used with a wide range of vane sizes, although as standard, it is sold with the 12.7 mm square vane and a set of four calibrated springs. The test can be performed directly on the sample or on a sample contained in a sampling tube. In this case the 27-WF1736 attachment for 38 and 100 mm diameter sampling tubes should be used - see Accessories.

- A motorizing unit is also available
- Weight: 11 kg (approx.)

Accessories

Alternative vanes

27-WF1732 Vane 25.4 x 25.4 mm.

27-WF1733 Vane 12.7 x 25.4 mm.

27-WF1734 Vane 12.7 x 19.0 mm.

Sampling tube holding attachment.

27-WF1736 Attachment to hold sample tubes of 38 and 100 mm diameter.

27-WF1730/2 Motorizing attachment to convert 27-WF1730 apparatus, including drive belt, pulley set and fixing studs. Testing speed 60 to 90°/min, conforming to ASTM D4648. 240V, 50 Hz, 1 ph.

27-WF1730/3 As above but 220V, 60 Hz, 1 ph.

27-WF1730/4 As above but 110V, 60 Hz, 1 ph.

Spares

27-WF1731 Spare vane 12.7 x 12.7 mm.

27-WF1735 Spare set of four calibrated springs.
The TORSHEAR machine is dedicated to the determination of the residual shear strength. The residual shear strength of soils is sometimes also termed the ultimate shear strength. This is the strength of soil when it is sheared to large displacements, for example along the failure plane of a landslide or in a fault zone.

A remoulded specimen is used to determine the residual shear properties of the soil. A slip surface is formed in the test specimen as part of the test procedure. It can also be useful to know what sort of value the residual shear strength of an intact soil can have, because this (when taken in conjunction with the peak shear strength of the same soil) indicates its brittleness or susceptibility to progressive failure. Soils with high brittleness need to be used with caution, in engineering works such as embankments, or if they cannot be removed, for example in a natural slope. In the unfortunate event of a slope failure occurring, the general scale of displacement will depend on the magnitude of the brittleness.

**TORSHEAR**

Ring Shear Apparatus

**Main Features**

- Microprocessor controlled drive system
- Speed range adjustable from 0.001 to 180°/min
- Rapid approach without any limit of rotation
- Two measurement options: mechanical with load rings and dial gauge, and electronic with data acquisition, using load cells, displacement transducer and Geodatalog data acquisition system

**Standards**

ASTM D6467 | BS 1377:7

**27-WF2202**

TORSHEAR, Bromhead ring shear apparatus.
110-240V, 50-60Hz, 1ph.

The TORSHEAR machine is dedicated to the determination of the residual shear strength. The residual shear strength of soils is sometimes also termed the ultimate shear strength. This is the strength of soil when it is sheared to large displacements, for example along the failure plane of a landslide or in a fault zone.

A remoulded specimen is used to determine the residual shear properties of the soil. A slip surface is formed in the test specimen as part of the test procedure. It can also be useful to know what sort of value the residual shear strength of an intact soil can have, because this (when taken in conjunction with the peak shear strength of the same soil) indicates its brittleness or susceptibility to progressive failure. Soils with high brittleness need to be used with caution, in engineering works such as embankments, or if they cannot be removed, for example in a natural slope. In the unfortunate event of a slope failure occurring, the general scale of displacement will depend on the magnitude of the brittleness.
The TORSHEAR apparatus tests the residual shear strength of remoulded soil samples. The main advantage of this method, when compared to using a shearbox apparatus, is that the shearing is continuous with a constant area. This method allows the field conditions to be recreated in the laboratory, giving very accurate residual shear strength values.

The sample is loaded vertically between two porous stones by a counterbalanced lever arm loading system with a ratio of 10:1. The base of the cell and lower platen are rotated by means of a variable speed motor, while rotation of the upper part of the cell is restrained by a pair of matching load rings or load cells which measure the torque transmitted to the sample.

The settlement of the upper platen during consolidation and shear can be monitored using a sensitive dial gauge or linear transducer mounted on the top of the loading yoke. A linear transducer and strain gauge load cells can be connected to the GEODATALOG for data acquisition and processing. See Accessories.

Using the waterproof membrane keyboard and the LCD 4-row / 20-character display, it is possible to set the speed in degrees/min and position the sample using the fast approach function. The test can be stopped using the keyboard or by setting a time or rotation limit.

Technical specifications
- Speed range: 0.001 to 180°/min
- Maximum shear stress: 500 kPa
- Maximum vertical stress: 1000 kPa (lever ratio 10:1)
- Specimen dimensions: area 40 cm² (internal diameter 70 mm, external diameter 100 mm), thickness 5 mm
- Power rating: 570 W
- Overall dimensions: 770 x 400 x 750 mm (excluding lever) (w x d x h)
- Weight: 72.5 kg (approx.)

Accessories
Electronic measuring devices
27-WF2202/3
Pair of load cells, 1 kN capacity, with adapters.

30-WF6207
Linear potentiometric transducer, 10 mm travel, complete with mounting block.

Note: In case displacement transducers and load cell are supplied complete with data acquisition system, then a traceable calibration certificate is available on request.

Data acquisition and processing system
Note: For more information on the Geodatalog, see page 66.

30-WF6016/T3
Ring shear Geo-Analysis template conforming to BS 1377.7.

30-WF6016/T16
Ring shear Geo-Analysis template conforming to ASTM 6467.

Mechanical (analogue) measuring devices
27-WF2202/1
Pair of matched load rings, 1 kN capacity.

30-WF6401
Dial gauge 10 mm travel, 0.002 mm resolution.

Weights for vertical load
27-WF2202/2
Set of slotted steel weights, total 50 kg.

Stand (optional)
27-WF2202/4
Metal stand for 27-WF2202 apparatus.

Spares
27-WF2202/5
Pair of porous stones.
### Triaxial testing

Investigation of stress-strain relationships in soil is usually carried out with triaxial tests where undisturbed, remoulded or compacted specimens are subjected to different stress level and drainage conditions to simulate as closely as possible the different situations that can occur in the subsoil on site and the possible effects of construction, excavations, embankments, landslides, etc.

<table>
<thead>
<tr>
<th>Test mode</th>
<th>Applications</th>
<th>Standards</th>
<th>Test equipment required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual with electronic measurement system</td>
<td>As above plus: Unsaturated</td>
<td>ASTM 2850 / 4767 / D7181 / D5084 BS 1377:6 / 7 / 8 CEN-ISO/TSI 17892-8 / 9 / 11 NF P94 070 / P94 074</td>
<td>- Triaxial load frame - Electronic measuring system: - Displacement transducer - External / submersible load cell - Pore pressure transducer - Volume change device - Triaxial cell with accessories (standard, banded or double-wall unsaturated cell) - Pressure system - De-airing system - Data acquisition system - Geo-Analysis processing templates</td>
</tr>
<tr>
<td>Automatic (PC-controlled) with digital measurement system AUTOTRIAX-2</td>
<td>As above plus: Stress path</td>
<td>ASTM 2850 / 4767 / D7181 / D5084 BS 1377:6 / 7 / 8 CEN-ISO/TSI 17892-8 / 9 / 11 NF P94 070 / P94 074</td>
<td>- Triaxial load frame - Digital measuring system: - Displacement transducer - External / submersible load cell - Pore pressure transducer - Triaxial cell with accessories (standard, banded or double-wall unsaturated cell) - Pressure/volume controller - De-airing system - Data acquisition and control units - Triaxial test automatic control and processing software</td>
</tr>
</tbody>
</table>
This section contains descriptions of different testing solutions and details of the equipment required to carry out the various types of triaxial test in manual, semi-automatic or automatic mode. A summary table is presented below in order to help the user to select the right equipment, from basic manual systems up to fully automatic advanced solutions.
Types of triaxial test: test descriptions

**Total stress - Unconsolidated Undrained (UU) test**  
ASTM D2850, BS 1377:7, CEN-150/TS17892-8, NF P94 070, NF P94 074  
With this method the shear strength is measured in terms of total stress. The soil specimen is not allowed to consolidate and maintains its original structure and water content, so that its compressive strength depends only on the level of geostatic stress in the field. Tests are often carried out on three specimens from the same sample, each subjected to a different confining pressure. Provided that the soil is fully saturated, the shear strength will be the same for each test and is known as "undrained shear strength".

**Effective stress - Consolidated Undrained (CU) test**  
ASTM D4767, BS 1377:8, CEN-150/TS17892-9, NF P94 070, NF P94 074  
With this test method the shear strength is measured in terms of effective stress. The specimen is saturated and allowed to consolidate (i.e. to change its structure and water content) at the required confining pressure. At the end of consolidation, the specimen is subjected to a controlled application of load, during which no drainage is allowed and pore pressure is measured. The effective stresses are calculated as the difference between the total stress and the pore pressure. Since the shear strength is affected by the effective stresses, by testing a set of three specimens at different confining pressures, it is possible to define the failure envelope according to Coulomb's model and define the parameters \( c' \) and \( \phi' \).

**Effective stress - Consolidated Drained (CD) test**  
ASTM D7181, BS 1377:8, CEN-150/TS17892-9, NF P94 070, NF P94 074  
This test method is the same as the CU test except that the failure stage is carried out very slowly to prevent any change in the pore pressure inside the specimen, which is allowed to drain. Calculation of the total and effective stresses and failure envelope are also the same as for the CU.

**Stress path test**  
Events on site such as excavation, construction or natural occurrences can produce changes in the magnitude and ratio of the principal stresses (major and minor). In a stress path test the horizontal and vertical pressures applied to the specimen are managed independently, which allows the behaviour of a soil subjected to anisotropic loading and unloading to be replicated and measured in the laboratory. This test can only be accurately and reliably performed with an automatic servo-controlled closed-loop system.
Permeability test in a triaxial cell

ASTM D5084, BS 1377:6, CEN-ISO/TS17892-11

The triaxial permeability test involves saturating and consolidating the specimen to the required effective stress in the same way as for a CD or CU test, but instead of a failure stage, water is allowed to flow through the specimen under a pre-defined difference of pressure and the rate of flow is measured. From this measurement the soil permeability is calculated.

Three independent pressure systems are used for the test; for the confining pressure, the drainage line to the top of the specimen and the drainage line to the base of the specimen.

Unsaturated soil test

An unsaturated testing system is used when effective stress testing is required that recreates in-situ conditions of specimens that exist in a naturally unsaturated state (for example soil that is higher than the water table).

In an unsaturated soil, the voids between soil particles are filled with both air and water, and surface tension forces create a negative pore water pressure (or suction) which pulls the soil particles together and increases the strength of the soil. Saturating the soil (replacing the air in the voids with water) results in a positive pore water pressure which pushes the soil particles apart and reduces the overall strength. Because of this, it is not desirable to saturate unsaturated or partially saturated material, but neither can it be tested using conventional triaxial systems because the negative suction causes problems with the equipment.

The solution to this problem is to use what is known as the axis translation method, which involves applying an air pressure via the top cap (in the same way as a water back pressure in a saturated test). This raises the pressure inside the sample to a positive value which, in turn, applies a positive pressure to the porous stone and to the pore water pressure transducer.

A special triaxial cell is used for the test, with a double wall which allows the total change in sample volume to be measured, and a high air entry stone in the base pedestal that allows water to pass but not air.

Using the axis translation method with the double-wall cell allows effective stress testing to be carried out on unsaturated material.
SOIL MECHANICS | TRIAXIAL TESTING

TRITECH
Triaxial load frames

WYKEHAM FARRANCE’s electro-mechanical TRITECH machines are the original high-performance load frames for triaxial tests. Introduced by the company over 50 years ago, they have undergone continuous development and are the ideal solution for advanced and research laboratories that want to perform high quality tests at high levels of productivity. Based on heavy duty triaxial load frames, with advanced electronics and high quality components, these frames are the top of the range currently available for triaxial testing on soils. The load frames are built around a robust twin chromed-column structure, ensuring extremely high rigidity. The loading platen is made from stainless steel. Four models are available depending on the max capacity and if equipped or not with a built-in data acquisition.

- 28-WF4005 and 28-WF4010, 50 and 100 kN cap.:
The models 28-WF4005 - 50 kN capacity and 28-WF4010 - 100 kN capacity can be used either as parts of a computer-controlled automatic testing system or as high-performance units under manual control with an external data acquisition. In manual mode, the user-friendly keyboard on the front panel allows to manage all the frame’s functions, including rapid approach facility that reduces test set-up time. For efficient use the last settings are stored and automatically recalled after switch on and micro switches prevent over-travel problems. In the Automatic PC-controlled triaxial systems the frame is driven through the RS 232 serial port, in order to operate under load or displacement closed loop control. These two models can also be equipped with a pneumatic actuator to perform both static and dynamic testing.

Standards

28-WF4005 28-WF4010

<table>
<thead>
<tr>
<th>common main features</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-WF4005, 28-WF4005/4C, 28-WF4010 and 28-WF4010/4C</td>
</tr>
<tr>
<td>Designed for soil testing laboratories to perform UU, CU, CD and stress path* (compression/extension) tests</td>
</tr>
<tr>
<td>Suitable for automatic PC-controlled triaxial testing (see AUTORIAX 2 system)*</td>
</tr>
<tr>
<td>Allows dynamic tests to be performed when fitted with a suitable actuator (see Dynatriax system)*</td>
</tr>
<tr>
<td>Maximum compression capacity: 50 kN or 100 kN</td>
</tr>
<tr>
<td>Speed range from 0.00001 to 99.99999 mm/min</td>
</tr>
<tr>
<td>Maximum sample diameter (for triaxial testing): 150 mm</td>
</tr>
<tr>
<td>The quality of the design avoids vibrations that may affect the specimen or measurements accuracy</td>
</tr>
<tr>
<td>Ideal solution for advanced and research laboratories that require high productivity and high quality testing</td>
</tr>
<tr>
<td>High-contrast 4 x 20-character display with 6-key membrane keyboard*</td>
</tr>
<tr>
<td>Very wide variable speed range suitable to perform also unconfined, CBR and Marshall tests</td>
</tr>
</tbody>
</table>
* Only for model without built in data acquisition
28-WF4005/4C, 28-WF4010/4C, 50 and 100 kN cap., 4 channels built-in data acquisition.

The models 28-WF 4005/4C – 50 kN capacity and 28-WF4010/4C – 100 kN capacity are fitted with 4 built-in channels and data acquisition, to be used either in standalone mode or connected to a PC. These load frames are equipped with a wide user friendly touch screen display, side mounted and very ergonomic allowing local control of the main functions and data acquisition.

In each model the panel and display are protected from water and dust by a waterproof membrane.

The touch screen display is extremely versatile to start, pause and stop the test, to set up data recording mode, to show live readings of the transducers in real time and to perform calibrations.

In addition a LAN connection and a dedicated software (included with the machine) allows remote control from the PC.

In remote control mode the software allows the user to control the main functions via PC as well as to calibrate the channels with linear, polynomial and multi-coefficient calibration mode, and to display the readings (figures and plots).

additional features

28-WF4005/4C and 28-WF4010/4C (models with 4 built-in channels data acquisition)

- Data acquisition by 4 in-built channels
- Double control mode including machine and data acquisition via local touch screen display or from remote PC (not included) and software (included)
- USB port to connect a memory stick (included with the machine) for test data storage
- Effective sampling rate up to 50/sec
- LAN communication
- Automatic test start and stop according to preset conditions
- Wide 5.7” waterproof touch screen color graphic display allowing machine control, live on screen data plot and tabulation
- Local and remote transducers calibration through the dedicated software
- Graphical and Numerical display of readings.

Detail of the Titech legendary gearbox. The system is designed to minimize the vibration and allow smooth transmission.
## TRITECH

Triaxial load frames (continued)

<table>
<thead>
<tr>
<th>Models</th>
<th>28-WF4005</th>
<th>28-WF4010</th>
<th>28-WF4005/4C</th>
<th>28-WF4010/4C</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 built-in channels</td>
<td>-</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Maximum sample diameter, mm</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Minimum testing speed, mm/min</td>
<td>0.00001</td>
<td>0.00001</td>
<td>0.00001</td>
<td>0.00001</td>
</tr>
<tr>
<td>Maximum testing speed, mm/min</td>
<td>99.99999</td>
<td>99.99999</td>
<td>99.99999</td>
<td>99.99999</td>
</tr>
<tr>
<td>Maximum compression force, kN</td>
<td>50</td>
<td>100</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Maximum tensile force, kN</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Minimum vertical clearance, mm</td>
<td>335</td>
<td>390</td>
<td>335</td>
<td>390</td>
</tr>
<tr>
<td>Maximum vertical clearance, mm</td>
<td>1100</td>
<td>1140</td>
<td>1100</td>
<td>1140</td>
</tr>
<tr>
<td>Horizontal clearance, mm</td>
<td>364</td>
<td>498</td>
<td>364</td>
<td>498</td>
</tr>
<tr>
<td>Platen diameter, mm</td>
<td>158</td>
<td>158</td>
<td>158</td>
<td>158</td>
</tr>
<tr>
<td>Platen travel, mm</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Dimensions, mm (h x w x d) (approx.)</td>
<td>1460 x 505 x 380</td>
<td>1830 x 600 x 520</td>
<td>1460 x 655 x 380</td>
<td>1830 x 750 x 520</td>
</tr>
<tr>
<td>Power, W</td>
<td>600</td>
<td>680</td>
<td>600</td>
<td>680</td>
</tr>
<tr>
<td>Weight, kg (approx.)</td>
<td>98</td>
<td>120</td>
<td>98</td>
<td>120</td>
</tr>
</tbody>
</table>

### Ordering information

**28-WF4005**
TRITECH50, Triaxial load frame 50 kN, 220-110 V / 50-60 Hz / 1 ph

**28-WF4010**
TRITECH100, Triaxial load frame 100 kN, 220-110 V / 50-60 Hz / 1 ph

**28-WF4005/4C**
TRITECH50 — 4 channels, Triaxial load frame 50 kN with 4 built-in data acquisition channels, 220-110 V / 50-60 Hz / 1 ph

**28-WF4010/4C**
TRITECH100 — 4 channels, Triaxial load frame 100 kN with 4 built-in data acquisition channels, 220-110 V / 50-60 Hz / 1 ph

### Accessories

A complete range of parts and accessories is available from WYKEHAM FARRANCE to configure these machines for any typical triaxial soil testing application.

- Triaxial cells
- Measurement instruments
- Pressure systems
- Water de-airing system
- Data acquisition and processing

**Note:** see our web site for the list of accessories to perform CBR, Marshall and Unconfined tests with TRITECH

---

The touchscreen controller is mounted on an ergonomic, multi-jointed support that allows its position to be adjusted in four different ways:
- changing the height of the support
- rotating the support (a)
- swivelling the touchscreen (b)
- tilting the touchscreen (c)
TRIAX

Triaxial Load frames

Two versions are available: both 50 kN capacity, with or without built-in data acquisition:

28-WF4001
The model 28-WF4001 requires an external data acquisition unit or can be fitted with analogical measurement system.

In manual mode, the user-friendly keyboard on the front panel allows to manage all the frame's functions, including rapid approach facility that reduces test set-up time. For efficient use the last settings are stored and automatically recalled after switch on and micro switches prevent overtravel problems.

28-WF4001/4C
The model 28-WF4001/4C is fitted with 4 built-in channels and data acquisition, to be used either in stand-alone mode or connected to a PC. This load frame is equipped with a wide user friendly touch screen display, side mounted and very ergonomic allowing local control of the main functions and data acquisition. The panel and display are protected from water and dust by a waterproof membrane. The touch screen display is identical to that one fitted to the 28-WF4005/4C model.

Standards

Wykeham Farrance's electro-mechanical TRIAX machines have been specifically designed for triaxial applications and are ideal for commercial laboratories that need a versatile machine capable of performing a wide range of tests. The load frame is built around a robust twin chromed-column structure, ensuring extremely high rigidity up to 50 kN.

28-WF4001 and 28-WF4001/4C models
> Designed for soil testing laboratories to perform UU, CU and CD triaxial tests on samples from 38 to 70 mm dia.
> Also suitable for a wide range of other tests such as unconfined, CBR and Marshall tests.
> Maximum load frame capacity: 50 kN
> Speed range from 0.00001 to 50.8 mm/min
> Large High-contrast 4 x 20-character display and 6-keys membrane keyboard*
> Maximum sample diameter (for triaxial testing): 70 mm
> Ideal solution for small laboratories that need a very versatile machine suitable to perform a wide range of tests.
* Only for model without built-in data acquisition

Additional features
28-WF4001/4C
(model with 4 built-in channels data acquisition)
> Double control mode including machine and data acquisition via local touch screen display or from remote PC (not included) and software (included).
> USB port to connect a memory stick (included with the machine) for test data storage.
> Effective sampling rate up to 50 / sec
> LAN communication
> Automatic test start and stop according preset conditions
> Wide 5.7” waterproof touch screen color graphic display allowing machine control, live on screen data plot and tabulation
> Local and remote transducers calibration through the dedicated software
> Graphical and Numerical display of readings.

Standards

28-WF4001 28-WF4001/4C

31
## Triaxial Load frames (continued)

<table>
<thead>
<tr>
<th>Model</th>
<th>28-WF4001</th>
<th>28-WF4001/4C</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 built-in channels</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Maximum sample diameter, mm</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Minimum testing speed, mm/min</td>
<td>0.00001</td>
<td>0.00001</td>
</tr>
<tr>
<td>Maximum testing speed, mm/min</td>
<td>50.8</td>
<td>50.8</td>
</tr>
<tr>
<td>Maximum load frame capacity, kN</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Minimum vertical clearance, mm</td>
<td>390</td>
<td>390</td>
</tr>
<tr>
<td>Maximum vertical clearance, mm</td>
<td>725</td>
<td>725</td>
</tr>
<tr>
<td>Horizontal clearance, mm</td>
<td>380</td>
<td>380</td>
</tr>
<tr>
<td>Platen diameter, mm</td>
<td>158</td>
<td>158</td>
</tr>
<tr>
<td>Platen travel, mm</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Dimensions, mm (h x w x d) (approx.)</td>
<td>1250 x 495 x 495</td>
<td>1250 x 645 x 495</td>
</tr>
<tr>
<td>Power, W</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Weight, kg (approx.)</td>
<td>90</td>
<td>90</td>
</tr>
</tbody>
</table>

### Ordering information

**28-WF4001**

TRIAX, Triaxial load frame 50 kN, 220-110 V / 50-60 Hz / 1 ph

**28-WF4001/4C**

TRIAX — 4 channels, Triaxial load frame 50 kN, 220-110V / 50-60 Hz / 1 ph

### Accessories

A complete range of parts and accessories is available from WYKEHAM FARRANCE to configure these machines for any typical triaxial soil testing application.

- Triaxial cells see page 33, 36
- Measurement instruments see page 44, 46
- Pressure system see page 40
- Water de-airing systems see page 42
- Data acquisition and processing see page 66

**Note:** see our web site for the list of accessories to perform CBR, Marshall and Unconfined tests with TRIAX.
Banded triaxial cells and accessories

**Standards**

ASTM D2850 | ASTM D4767 | ASTM 7181 | BS 1377:8 | BS 1377:9 | CEN-ISO/TS 17892-8-9 | NF P94 070 | NF P94 074

The cell essentially consists of a transparent chamber which is banded to prevent excessive expansion during the test.

The design of the cell ensures vertical alignment of the loading ram by clamping the Perspex wall separately from the cell top.

The cell has to be completed with a pedestal, top cap (standard or vacuum) and other accessories conforming to the specimen size. The cells can be fitted not only with accessories of the nominal size, but also with those of smaller sizes (e.g. the 28-WF4070 70 mm cell can be adapted to test specimens with diameters of 38 and 50 mm). 28-WF4070 to 28-WF4150 cells can be fitted with an upgrading kit so that tests can be performed using local strain transducers and bender elements.

See Upgrading options.

**Specifications**

<table>
<thead>
<tr>
<th>Product code</th>
<th>Nominal sample diameter, mm</th>
<th>Sample diameter range, mm</th>
<th>Maximum working pressure, kPa</th>
<th>Maximum cell height, mm</th>
<th>Cell diameter, mm (inc. valves)</th>
<th>Weight, kg (approx.)</th>
<th>No. of inlet points</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-WF4050</td>
<td>50</td>
<td>38 to 50</td>
<td>2000</td>
<td>410</td>
<td>350</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>28-WF4070</td>
<td>70</td>
<td>38 to 70</td>
<td>3500</td>
<td>550</td>
<td>400</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>28-WF4100</td>
<td>100</td>
<td>38 to 100</td>
<td>2000</td>
<td>600</td>
<td>440</td>
<td>21</td>
<td>5</td>
</tr>
<tr>
<td>28-WF4150</td>
<td>150</td>
<td>38 to 150</td>
<td>2000</td>
<td>710</td>
<td>520</td>
<td>40</td>
<td>5</td>
</tr>
</tbody>
</table>

Attachment for vacuum top cap for extension tests: -

Upgrading option for use of local strain transducers and bender elements:

**Effective stress/Total stress testing**: ✓

**Stress path testing**: ✓

**Dynamic testing**: ✓

- Maximum working pressure of 2000 kPa or 3500 kPa (28-WF4070 model only)
- Separate cell chamber clamping prevents overstressing chamber and ensures correct alignment
- Light alloy construction with stainless steel ram and O-ring seal
- Built-in ram clamp
- Includes rod and rest for strain dial gauge or displacement transducer
- Five on/off-no-volume-change valves fitted as standard
- For samples with diameters of 38, 50, 70, 100 and 150 mm
- Chamber height is suitable for submersible load cells
- Rapid assembly design
- Designed to accommodate a specimen with a height twice its diameter
- Models 28-WF4070, 28-WF4100 and 28-WF4150 can be used to perform stress path and dynamic testing using a vacuum attachment with the appropriate pedestal and top cap
- Models 28-WF4070, 28-WF4100 and 28-WF4150 can be upgraded with an advanced kit to make them compatible with local strain transducers and bender elements

**Ordering information**

28-WF4050
Banded triaxial cell for samples up to 50 mm diameter.
28-WF4070
Banded triaxial cell for samples up to 70 mm diameter.
28-WF4100
Banded triaxial cell for samples up to 100 mm diameter.
28-WF4150
Banded triaxial cell for samples up to 150 mm diameter.

Note: Pedestals, top caps, porous discs, rubber membranes, O-rings etc. are not included - see Accessories.
Accessories

Triaxial cell pedestals
Each cell has to be fitted with a pedestal corresponding to the size of the specimens to be tested. Using specific adaptive pedestals it is possible to test specimens with different diameters in the same triaxial cell - see the table below.

<table>
<thead>
<tr>
<th>Diameter, mm</th>
<th>Banded triaxial cell product code</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>28-WF4050</td>
</tr>
<tr>
<td>50</td>
<td>28-WF4031/5</td>
</tr>
<tr>
<td>70</td>
<td>28-WF4051/5</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter, mm</th>
<th>Top cap</th>
<th>Vacuum top cap</th>
<th>Base disc</th>
<th>Porous discs (2)</th>
<th>Membranes (pack of 10)</th>
<th>O-rings (pack of 10)</th>
<th>Membrane stretcher</th>
<th>O-ring placing tool</th>
<th>Two-part split former</th>
<th>Two-part split mould</th>
<th>Lateral filter drains (pack of 50)</th>
<th>Filter discs (pack of 100)</th>
<th>Hand sampler</th>
<th>Two-part split former with vacuum attachment</th>
</tr>
</thead>
</table>

28-WF4005/E
Extension test accessory for connecting the load cell ram to the cross bar of the load frame.
This accessory must be used with a submersible load cell and a vacuum top cap.
Upgrading options
Upgrading kits are available that allow local strain transducers and bender elements to be used inside the banded cells. An access ring is provided that fits between the cell base and the cell body with holes for the cables to go through. Watertight plugs are included to seal the unused holes.

**28-WF4070/ADV**
Advanced upgrading kit for triaxial cell WF4070 allowing use of local strain transducers and bender elements.

**28-WF4100/ADV**
As above but for triaxial cell WF4100.

**28-WF4150/ADV**
As above but for triaxial cell WF4150.
Standard triaxial cells and accessories

These cells essentially consist of a transparent polycarbonate chamber which has a top plate with a piston assembly fitted into it and a double flange base fitted to the bottom. Three (or six) simple thumbscrews are used to clamp the upper part of the cell to the base, which makes assembly and disassembly a very quick and simple operation. The base of the cell has four inlet points for top drainage/back pressure, cell pressure and base drainage/pore water pressure. Two of these are supplied with special no-volume-change valves. Pedestals, top caps, porous discs, rubber membranes and O-rings are not included and have to be ordered separately - see Accessories.

Specifications

<table>
<thead>
<tr>
<th>Product code</th>
<th>28-WF0410/A</th>
<th>28-WF0411/A</th>
<th>28-WF0416/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal sample diameter, mm</td>
<td>50</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>Sample diameter range, mm</td>
<td>35 to 50</td>
<td>35 to 70</td>
<td>70 to 100</td>
</tr>
<tr>
<td>Maximum working pressure, kPa</td>
<td>1700</td>
<td>1700</td>
<td>1700</td>
</tr>
<tr>
<td>Maximum cell height, mm</td>
<td>450</td>
<td>500</td>
<td>560</td>
</tr>
<tr>
<td>Cell diameter, mm (inc. valves)</td>
<td>270</td>
<td>310</td>
<td>340</td>
</tr>
<tr>
<td>Weight, kg (approx.)</td>
<td>5</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>No. of inlet points</td>
<td>4* (for top drainage/back pressure, cell pressure and base drainage/pore pressure)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective stress/Total stress testing</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

* Two valves are already included, the other two must be ordered separately.

Ordering information

28-WF0410/A
Standard triaxial cell for 35, 38 and 50 mm diameter samples.

28-WF0411/A
Standard triaxial cell for 35, 38, 50 and 70 mm diameter samples.

28-WF0416/A
Standard triaxial cell for 70 and 100 mm diameter samples.

---

Legend

1. Pedestal. Used to adapt the triaxial cell base for different sample sizes. Supplied complete with a solid disc for tests without drainage.
2. Top cap. Used to spread the load evenly over the whole cross-sectional area of the sample when drainage to the top of the sample is required. Includes a nylon tube and connector for the drainage line.
3. Porous disc. Acts as a filter ensuring that the passage of water into and out of the sample is evenly spread over the whole cross-sectional area. Two are required - one for the top of the sample and one for the base.
5. O-rings. Used to seal the membrane against the pedestal and the top cap at either end of the sample. Supplied in packs of 10.
6. Membrane stretcher. Used to the membrane open so it can be easily placed over the specimen without any disturbance.
7. Filter paper drains. Used as side drains when specimens have low permeability. They are particularly useful when saturating clays before consolidation and shearing. Pack of 50.
8. Split sand former. A specially designed piece of equipment for use when preparing non-cohesive soils which otherwise could not be mounted in a triaxial cell.
9. Drainage burette. 10 ml capacity burette used to prepare non-cohesive specimens by applying a negative pressure to the base of the specimen and for measuring drainage into and out of the specimen when testing with the specimen open to the atmosphere. Supplied with connections for triaxial cell.
10. O-ring placing tool. Used for applying the O-rings with the minimum disturbance to the sample.
11. No-volume-change valve. Identical to the two valves supplied with the triaxial cells and used for opening and closing the base drainage line when measuring pore pressure or fitting the drainage burette.
12. Split mould. Used for trimming the ends of undisturbed soil specimens.
Triaxial cell pedestals

Each cell has to be fitted with a pedestal corresponding to the size of the specimens to be tested. Using specific adaptive pedestals it is possible to test specimens with different diameters in the same triaxial cell – see the table below. All pedestals are permeable, with holes for base drainage/pore pressure measurement, and are supplied complete with a solid disc for use in undrained tests.

<table>
<thead>
<tr>
<th>Diameter, mm</th>
<th>Standard triaxial cell product code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>28-WF0410/A</td>
</tr>
<tr>
<td>35</td>
<td>28-WF0410/A1</td>
</tr>
<tr>
<td>38</td>
<td>28-WF0410/A2</td>
</tr>
<tr>
<td>50</td>
<td>28-WF0410/A3</td>
</tr>
<tr>
<td>70</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
</tr>
</tbody>
</table>

Hand sampler comprising cutter, wooden dolly and receiver

Triaxial cell and sample accessories

<table>
<thead>
<tr>
<th>Diameter, mm</th>
<th>35</th>
<th>38</th>
<th>50</th>
<th>70</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top cap</td>
<td>28-WF0420/A3</td>
<td>28-WF0422/A3</td>
<td>28-WF0425/A3</td>
<td>28-WF0428/A3</td>
<td>28-WF0432/A3</td>
</tr>
<tr>
<td>Porous discs (2)</td>
<td>28-WF0420/A4</td>
<td>28-WF0434</td>
<td>28-WF0454</td>
<td>28-WF0474</td>
<td>28-WF0410/A4</td>
</tr>
<tr>
<td>Membranes (pack of 10)</td>
<td>28-WF0420/A5</td>
<td>28-WF0435</td>
<td>28-WF0455</td>
<td>28-WF0475</td>
<td>28-WF0410/A5</td>
</tr>
<tr>
<td>O-rings (pack of 10)</td>
<td>28-WF0420/7</td>
<td>28-WF0436</td>
<td>28-WF0456</td>
<td>28-WF0476</td>
<td>28-WF0410/7</td>
</tr>
<tr>
<td>Membrane stretcher</td>
<td>28-WF0420/A8</td>
<td>28-WF0431/A</td>
<td>28-WF0451/A</td>
<td>28-WF0471/A</td>
<td>28-WF0410/A8</td>
</tr>
<tr>
<td>O-ring placing tool</td>
<td>28-WF0420/A9</td>
<td>28-WF0431/B</td>
<td>28-WF0451/B</td>
<td>28-WF0471/B</td>
<td>28-WF0410/A9</td>
</tr>
<tr>
<td>Two-part split former</td>
<td>28-WF0420/A6</td>
<td>28-WF0422/A6</td>
<td>28-WF0425/A6</td>
<td>28-WF0428/A6</td>
<td>28-WF0432/A6</td>
</tr>
<tr>
<td>Filter discs (pack of 100)</td>
<td>-</td>
<td>28-WF0431/F</td>
<td>28-WF0451/F</td>
<td>28-WF0471/F</td>
<td>28-WF0410/F</td>
</tr>
</tbody>
</table>

Other accessories

- **28-WF0405/39**
  Platen adapter to fit standard triaxial cell onto TRITECH50 model 28-WF0410/A
- **86-D0845**
  Water-repellent grease, 1 kg box.
- **28-WF0420/15**
  Greaser for triaxial cells.
- **28-WF0490/1**
  Flaring tool.
- **28-WF0490**
  Nylon tubing, OD 6 mm x ID 4 mm, 20 m.
- **28-WF0420/12**
  No-volume-change valve.

^1 50 ml model.
Double-wall triaxial cells for unsaturated tests

In traditional triaxial systems, where saturated samples are tested, the change in specimen volume is measured simply by monitoring how much water enters or leaves the sample using a volume change transducer. When testing unsaturated samples however, this is not possible since volume change measurements are complicated by the compressibility of the air in the voids.

If an increase of confining pressure is applied to an unsaturated sample, a movement of water out of the sample will occur but an additional change in size will result from the compression of the air in the voids.

Correct determination of volume change requires both the volume of water leaving the sample and the total volume change of the sample to be measured.

_for detailed information visit our web site...

Beside is shown the double-wall triaxial cell, with inner wall made from glass, complete with access ring for transducer cables. The cell has to be completed with a base pedestal with High-Air Entry Stone.

Two models are available:

<table>
<thead>
<tr>
<th>Product code</th>
<th>28-WF4170</th>
<th>28-WF4171</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal sample diameter, mm</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>Sample diameter range, mm</td>
<td>50 to 70</td>
<td>50 to 100</td>
</tr>
<tr>
<td>Maximum working pressure, kPa</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>Maximum cell height (mm)</td>
<td>690</td>
<td>795</td>
</tr>
<tr>
<td>Cell diameter, mm (inc. valves)</td>
<td>478</td>
<td>535</td>
</tr>
<tr>
<td>Weight, kg (approx.)</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>No. of inlet points</td>
<td>6 (for top drainage/back pressure, cell pressure and base drainage/pore pressure)</td>
<td>Included</td>
</tr>
</tbody>
</table>

**Axis translation method with High Air Entry Stone (HAES): operating principle.**

One of the problems with testing a sample with high suction (negative pore water pressure) is that it will suck the water from the porous stone on the base pedestal and cause cavitation in the pore water pressure measuring system.

To prevent this happening the porous disc has been replaced with a high air entry stone. These stones allow water to pass through but air at pressures below the rating of the stone cannot pass. For example, a 5 bar stone will not allow air at pressures under 5 bar to pass through. The stone is cemented into an anodised aluminium ring which fits into a recess in the pedestal with an o-ring seal to prevent water passing around the outside of the stone.
**Accessories**

**Double-wall triaxial cell unsaturated pedestal**

Pedestal set for unsaturated cell, comprising pedestal, 2 bar High Air Entry Stone sealed into an aluminium ring and a height compensation ring. Using specific adaptive pedestals it is possible to test specimens with different diameters in the same triaxial cell - see the table below.

<table>
<thead>
<tr>
<th>Diameter, mm</th>
<th>Double-wall triaxial cell product code</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>28-WF4170/50 28-WF4171/50</td>
</tr>
<tr>
<td>70</td>
<td>28-WF4170/70 28-WF4171/70</td>
</tr>
<tr>
<td>100</td>
<td>- 28-WF4171/100</td>
</tr>
</tbody>
</table>

**High Air Entry Stones (HAES)**

A 2 bar capacity HAES is included with the pedestals as standard but it can be easily replaced with stones of other capacities for 50, 70 and 100 mm diameter pedestals - see the table below.

<table>
<thead>
<tr>
<th>Pedestal diameter</th>
<th>Maximum air pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 mm</td>
<td>1 bar</td>
</tr>
<tr>
<td></td>
<td>28-WF4150/1B</td>
</tr>
<tr>
<td></td>
<td>28-WF4170/1B</td>
</tr>
<tr>
<td></td>
<td>28-WF4171/1B</td>
</tr>
<tr>
<td>70 mm</td>
<td>2 bar</td>
</tr>
<tr>
<td></td>
<td>28-WF4150/2B</td>
</tr>
<tr>
<td></td>
<td>28-WF4170/2B</td>
</tr>
<tr>
<td></td>
<td>28-WF4171/2B</td>
</tr>
<tr>
<td>100 mm</td>
<td>5 bar</td>
</tr>
<tr>
<td></td>
<td>28-WF4150/5B</td>
</tr>
<tr>
<td></td>
<td>28-WF4170/5B</td>
</tr>
<tr>
<td></td>
<td>28-WF4171/5B</td>
</tr>
<tr>
<td>10 bar</td>
<td>10 bar</td>
</tr>
<tr>
<td></td>
<td>28-WF4150/10B</td>
</tr>
<tr>
<td></td>
<td>28-WF4170/10B</td>
</tr>
<tr>
<td></td>
<td>28-WF4171/10B</td>
</tr>
<tr>
<td>15 bar</td>
<td>15 bar</td>
</tr>
<tr>
<td></td>
<td>28-WF4150/15B</td>
</tr>
<tr>
<td></td>
<td>28-WF4170/15B</td>
</tr>
<tr>
<td></td>
<td>28-WF4171/15B</td>
</tr>
</tbody>
</table>

**Spare parts**

<table>
<thead>
<tr>
<th>Pedestal diameter, mm</th>
<th>50</th>
<th>70</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium plate for</td>
<td>28-WF4150/3</td>
<td>28-WF4170/3</td>
<td>28-WF4171/3</td>
</tr>
<tr>
<td>testing saturated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>samples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminium retaining</td>
<td>28-WF4150/4</td>
<td>28-WF4170/4</td>
<td>28-WF4171/4</td>
</tr>
<tr>
<td>ring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base pedestal</td>
<td>28-WF4150/5</td>
<td>28-WF4170/5</td>
<td>28-WF4171/5</td>
</tr>
</tbody>
</table>

For top cap and accessories see page 34

**Components of pedestal set for unsaturated cell**

1 Pedestal set for unsaturated test
2 High Air Entry stone (HAES) sealed on aluminium ring
3 Aluminium compensation ring
4 Aluminium plate for saturated soil test
5 Porous stone for saturated soil test

**Typical configuration of a system to perform triaxial tests on unsaturated samples 70 mm dia. with the axis translation method with the double wall cell 28-WF4170**

<table>
<thead>
<tr>
<th>Product code</th>
<th>Description</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-WF4170</td>
<td>Double-wall triaxial cell for 70 mm diameter samples</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4170/70</td>
<td>Pedestal with HAES for 70 mm diameter samples</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4072/A</td>
<td>Top cap for 70 mm diameter samples</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4005</td>
<td>Titech triaxial testing machine, 50 kN capacity</td>
<td>1</td>
</tr>
<tr>
<td>86-D2015</td>
<td>Air compressor, 50 L</td>
<td>1</td>
</tr>
<tr>
<td>28-WF2016/2</td>
<td>Air filter/water trap for air compressor</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4220/A</td>
<td>De-airing tank, 7 L</td>
<td>1</td>
</tr>
<tr>
<td>86-D2001</td>
<td>Vacuum pump</td>
<td>1</td>
</tr>
<tr>
<td>86-D2005</td>
<td>Air drying unit</td>
<td>1</td>
</tr>
<tr>
<td>86-D2064</td>
<td>Rubber tube for vacuum</td>
<td>2</td>
</tr>
<tr>
<td>86-D0819</td>
<td>Silica gel desiccant with indicator</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4225</td>
<td>Valve panel for de-airing tank</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4331</td>
<td>Pressure control panel, 3 lines</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4330/2</td>
<td>Digital gauge for 28-WF4331</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4320</td>
<td>Bladder air/water cylinder</td>
<td>2</td>
</tr>
<tr>
<td>28-WF4191</td>
<td>Nylon tubing 6x 8 mm diameter, 10 m</td>
<td>2</td>
</tr>
<tr>
<td>28-WF6353</td>
<td>Submersible load cell, 5 kN capacity</td>
<td>1</td>
</tr>
<tr>
<td>30-WF6208</td>
<td>Displacement transducer, 25 mm travel</td>
<td>1</td>
</tr>
<tr>
<td>28-WF6221</td>
<td>Mounting bracket for 25 mm diameter cell ram</td>
<td>1</td>
</tr>
<tr>
<td>28-WF6300</td>
<td>Pressure transducers, 10 bar</td>
<td>2</td>
</tr>
<tr>
<td>28-WF6310</td>
<td>De-airing block</td>
<td>2</td>
</tr>
<tr>
<td>28-WF4410</td>
<td>Automatic volume change apparatus</td>
<td>2</td>
</tr>
<tr>
<td>30-WF6008</td>
<td>Geodatalog 8-channels datalogger</td>
<td>1</td>
</tr>
<tr>
<td>82-P9008/ELT</td>
<td>Set of four cables</td>
<td>2</td>
</tr>
<tr>
<td>30-WF6042</td>
<td>Transducer extension cables</td>
<td>6</td>
</tr>
</tbody>
</table>

For top cap and accessories see page 34
Pressure systems

We produce three different systems for providing water at controlled pressures to triaxial systems:

- **Oil/Water pressure apparatus**, suitable for pressures up to 1700 kPa and 3500 kPa
- **Air/Water pressure system**, consisting essentially of a distribution panel with air/water bladder cylinders and an air compressor, suitable for pressures up to 1000 kPa
- **Hydromatic** stand-alone pressure/volume controller

Each system has to be completed with the De-airing water system. See page 42.

### Oil/Water pressure apparatus

**main features**

- Generates and automatically controls the set pressure up to a maximum of 3500 kPa (500 p.s.i.) within ± 0.5 %
- Very stable over long periods
- Required pressure set using precision hand wheel control
- Stepless pressure increments
- No weights or calibration required

This apparatus provides an infinitely variable constant pressure using an adjustable spring type dead weight pressure feedback system connected in-line with a pump and an oil/water interchange vessel.

The apparatus comprises: hydraulic pump, honed piston/spring assembly, cylindrical oil/water interchange vessel, pressure gauge, valves and 2 kg of oil.

The 28-WF4334 water distribution panel can be used to simplify the process of refilling the water in the vessel - see Accessories.

Two versions are available:

- 28-WF4302 / 28-WF4304 for pressures up to 1700 kPa
- 28-WF4312 / 28-WF4314 for pressures up to 3500 kPa

**Dimensions:** 310 x 300 x 400 mm

**Weight:** 16 kg (approx.)

### Ordering information

<table>
<thead>
<tr>
<th>Order Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-WF4302</td>
<td>Oil and water constant pressure apparatus for pressures up to 1700 kPa. 230 V, 50 - 60 Hz, 1 ph.</td>
</tr>
<tr>
<td>28-WF4304</td>
<td>As above but 110 V, 60 Hz, 1 ph.</td>
</tr>
<tr>
<td>28-WF4312</td>
<td>Oil and water constant pressure apparatus for pressures up to 3500 kPa. 230 V, 50 - 60 Hz, 1 ph.</td>
</tr>
<tr>
<td>28-WF4314</td>
<td>As above but 110 V, 60 Hz, 1 ph.</td>
</tr>
</tbody>
</table>

### Hydromatic stand-alone pressure/volume controller

**main features**

- Application of pressure up to 3500 kPa for triaxial or permeability tests
- Recording and display of pressure and volume change measurements in real time
- Temporary or continuous connection to PC for data downloading with different protocols through RS 232
- Possibility to set pressure ramp and cycles
- Easy connection to any kind of system

**Technical specifications**

- **Output pressure:** up to 3500 kPa
- **Pressure accuracy:** ± 0.1% of full scale
- **Volume accuracy:** 0.1 cm³
- **Resolution:** 131000 divisions
- **Volumetric capacity:** 250 cm³
- **Data downloading:** via RS 232
- **Overall dimensions:** 250 x 220 x 150 mm
- **Weight:** 7 kg (approx.)

**Ordering information**

<table>
<thead>
<tr>
<th>Order Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-WF4300/A</td>
<td>Hydromatic stand-alone pressure/volume controller. 110-240 V, 50-60 Hz, 1 ph.</td>
</tr>
</tbody>
</table>

### Accessories and spares

<table>
<thead>
<tr>
<th>Order Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-WF4334</td>
<td>High viscosity oil, 5 kg.</td>
</tr>
<tr>
<td>28-WF4191</td>
<td>Nylon tubing ID 6 mm x OD 8 mm, 10 m length.</td>
</tr>
</tbody>
</table>
Air/Water pressure system

This system basically comprises a distribution panel, air/water bladder cylinders (one per required pressure line) and an air compressor.

Pressure distribution panels

Two models are available: 28-WF4330 for two pressure lines and 28-WF4331 for three pressure lines. They include precision air regulators, pressure outlets and quick release fittings.

They have to be fitted with a digital gauge (see Accessories, model 28-WF4330/2).

Dimensions/weight:
28-WF4330: 510 x 454 x 184 mm /10 kg (approx.)
28-WF4331: 690 x 454 x 184 mm /15 kg (approx.)

Air/water bladder cylinder

The air/water bladder cylinders are used to deliver pressurized water up to 1000 kPa to triaxial cells via the pressure distribution panels. The main advantages of using this apparatus are:
- High degree of accuracy
- Extremely simple to operate
- Future expansion of system very easy and relatively low cost
- Bladder enables the use of de-aired water
- Large reservoir to cope with long term tests and large samples

The cell, made of a transparent acrylic tube flanged between two light alloy disc with a rubber membrane fitted inside, can operate continuously at pressures up to 1000 kPa. The unit acts as a reservoir/interface between the compressed air (used as a pressure source) and the water (used as the pressurizing medium in the triaxial cell). The cylinders have to be used with a 28-WF4330 or 28-WF4331 two or three line distribution panel depending on the application.

Dimensions: 178 mm diameter x 410 mm height
Weight: 5.8 kg (approx.)

Air compressor

The air compressor requires air filter/water trap and has the following specifications:
- Max. pressure: 1000 kPa
- Continuous working pressure: 800 kPa
- Reservoir capacity: 50 liters
- Max air delivery: 234 L/min
- Power rating: 1500 W
Dimensions: 985 x 395 x 820 mm (w x dxh)
Weight: 62 kg (approx.)

Ordering information

28-WF4330
Two-line pressure distribution panel, complete with air regulators and pressure outlets.

28-WF4331
Three-line pressure distribution panel, complete with air regulators and pressure outlets.

28-WF4320
Air/water pressure bladder cylinder.

86-D2015
Laboratory air compressor, 10 bar maximum pressure, 50 L capacity. 230 V, 50 Hz, 1 ph.

86-D2015/Y
As above but 220 V, 60 Hz, 1 ph.

86-D2015/Z
As above but 110 V, 60 Hz, 1 ph.

28-WF2016/2
Water trap for air compressor.

Accessories and spares

28-WF4330/2
Digital pressure gauge, 1 kPa resolution.

28-WF4330/2C
As above but, with traceable calibration certificate.

28-WF4330/3
Spare air pressure regulator, 150 psi (1000 kPa), with fittings for OD 8 mm tubing.

28-WF4191
Nylon tubing, ID 6 mm x OD 8 mm, 10 m length.

28-WF0490
Nylon tubing, ID 4 mm x OD 6 mm, 20 m length.

28-WF4320/1
Spare rubber membrane for 28-WF4320 air/water bladder cylinder.

28-WF4330 with digital pressure gauge 28-WF4330/2

28-WF4331 with digital pressure gauge 28-WF4330/2

28-WF4320

86-D2015
De-airing the water, that will be used to fill triaxial cells, pressure systems and volume change measurement apparatus, is essential for properly saturating soil specimens. The system comprises the following:

- A de-airing tank (two versions are available with 7 or 23 L capacity)
- Vacuum pump with air drying unit
- Valve panel
- Tubing and accessories

During operation, the vacuum pump is connected to the air outlet of the tank the vacuum draws the air out of the water.

**De-airing tanks**

The tanks consist of a transparent acrylic cylinder fitted with a water spray inlet, an air outlet, a water outlet and a metal stand which can be wall-mounted at a suitable level to fill the triaxial system by gravity.

Two models are available:

- 28-WF4220/A, 7 litre capacity
  - Overall dimensions: 579 x 200 x 209 mm
  - Weight: 6.4 kg (approx.)
- 28-WF4221/A, 23 litre capacity
  - Overall dimensions: 619 x 320 x 311 mm
  - Weight: 12 kg (approx.)
Vacuum pump, air drying unit and accessories
Our vacuum pump 86-D2001 has to be used with the air drying unit (86-D2005) filled with silica gel desiccant (86-D0819). This is recommended to avoid/limit water vapour mixing with the oil in the pump, which, in significant concentrations, may cause serious damage to the pump. When the pump will be used intensively, use of the outlet mist filter (86-D2001/3) is also recommended, which collects any oil vapour issuing from the oil reservoir during operation.

Specifications
86-D2001 Vacuum pump
- Free air displacement: 75 L/min
- Ultimate vacuum: 0.1 mbar
- Power: 180 W
- Dimensions: 300 x 150 x 240 mm (approx.)
- Weight: 8.5 kg (approx.)

86-D2005 Air drying unit
- Plastic frame with acrylic cylinder
- Dessicant capacity: 500 g (approx.)
- Overall dimensions: 185 mm diameter x 300 mm
- Weight: 1 kg (empty, approx.)

86-D2001/3 Outlet mist filter (optional)
- Weight: 0.7 kg (approx.)

Valve panel
For connecting the de-airing tank to the vacuum pump. Includes water tap connection and two de-aired water outlets.
Dimensions: 510 x 200 x 30 mm
Weight: 3 kg (approx.)

Ordering information
28-WF4220/A
De-airing tank, 7 litre capacity.

28-WF4221/A
De-airing tank, 23 litre capacity.

86-D2001
Vacuum pump. 230 V, 50 - 60 Hz, 1 ph.

86-D2064
Rubber tube for vacuum pump.

86-D2005
Air drying unit.

86-D0819
Silica gel desiccant, 1 kg.

28-WF4225
Valve panel.
Analoge measurement for triaxial systems

Load rings for triaxial frames
Load rings can be directly connected to the adapter fitted to the cross-head of triaxial frames. Using the 28-WF1049 connector (see Accessories) they can be adapted for use with our complete range of triaxial cells. Supplied complete with calibration chart.

Specifications
- High resolution dial gauge, 0.001 mm
- Dimensions: 182 mm diameter x 214 mm height
- Weight: 1.2 to 2.2 kg (approx.)

Ordering information
28-WF6450
Load ring, 1 kN capacity.
28-WF6451
Load ring, 2 kN capacity.
28-WF6452
Load ring, 5 kN capacity.
28-WF6453
Load ring, 10 kN capacity.

Double burette volume change apparatus
This apparatus has two measurement tubes consisting of a 25 ml burette mounted internally and an acrylic tube externally. The burette tubes are connected directly to a reversing valve system, which is used to reverse the direction of travel of the interface in the measurement tubes without affecting the direction of flow of water to or from the triaxial cell. The unit also includes a by-pass valve system when volume change measurement is not required. Burettes are calibrated to Class A.

Dimensions: 130 x 682 x 87 mm
Weight: 3 kg (approx.)

Accessories
28-WF1049
Connector for triaxial cells.
28-WF1048
Adapter to connect load rings to the cross beam of WF load frame to CBR and Marshall test
82-T1000/9
Adapter has to be used to connect WF load ring with Multispeed

Axial strain dial indicators
50 mm dial diameter, clockwise rotation. Supplied complete with rear mounts for connection to load rings. Two models are available: 30 and 50 mm travel.

Weight: 200 g (approx.)

Specifications
- High resolution dial gauge, 0.01 mm
- Accuracy: ±1%
- Dimensions: 182 mm diameter x 214 mm height
- Weight: 1.2 to 2.2 kg (approx.)

Ordering information
28-WF4402
Dial gauge, 30 mm travel, 0.01 mm subdivisions.
28-WF4403
Dial gauge, 50 mm travel, 0.01 mm subdivisions.

Ordering information
28-WF4400
Double burette volume change apparatus.

Accessories
28-WF4400/1
Red dye hydrocarbon soluble pack for 500 ml.
Pore water pressure measurement

Pore pressure can be precisely measured using a pressure transducer connected to the triaxial cell via a de-airing block (28-WF6310 for the banded triaxial cells or 28-WF4459 for the standard triaxial cells). For triaxial tests with manual data recording, the transducer (e.g., our model 28-WF6300) can be plugged into the 28-WF4450 readout unit, eliminating the need for a data acquisition system.

Triple channel digital readout unit for pore pressure measurement

This digital pressure gauge consists of a long-term steady analogue section and a 16-bit A/D converter which guarantees 65,000 internal divisions. The unit has internal batteries, which is assisted by the AUTO-Power-Off function that activates if no change in readings is detected during any 30 minute period. The unit is fitted with a multiplexer selector switch.

Technical specifications

- Display: 4 x 20 characters
- Measuring units (programmable): mbar, bar, MPa, kPa, psi
- Accuracy: ± 0.2 % full scale
- Scanning rate: 50 readings per second
- Dimensions: 120 x 130 x 75 mm (w x d x h)
- Weight: 1 kg (approx.)

Ordering information

28-WF4450
Triple channel digital readout unit for pore pressure measurement. Battery powered. 110 - 220, 50 - 60 Hz, 1 ph.

Pressure transducers

Used for the measurement of pore pressure in conventional testing systems and also cell and back pressure in the automatic and dynamic testing systems.

Ordering information

28-WF6300
Pressure transducer, 1000 kPa
28-WF6301
Pressure transducer, 2000 kPa
28-WF6302
Pressure transducer, 3500 kPa

Note: The transducers have to be connected to triaxial cells using a suitable de-airing block – see Accessories.

Accessories

28-WF6310
De-airing block for connecting a pressure transducer to a banded triaxial cell.
28-WF4459
De-airing block for connecting a pressure transducer to a standard triaxial cell.
Electronic measurement for triaxial systems

External load cells
Used to measure the axial force applied to a specimen in a triaxial cell. Supplied complete with a connector for attaching to the crosshead of our triaxial load frames.

Submersible load cells
Submersible (internal) load cells have been designed to work inside the triaxial cells. They have a low hysteresis and very good linearity together with a substantial overload safety feature and are supplied complete with rams to suit Banded triaxial cells 28-WF4050 to 28-WF4150 (Load cells with a 15.5 mm diameter ram fit the 28-WF4050 cell, whilst the 25 mm diameter ram fits all the other cell models).

Different models are produced for dynamic testing which are practically identical to the standard models except for the way they connect to the triaxial system.

Technical specifications
- Nominal sensitivity: 2mV/V
- Accuracy: better than 0.2%
- Dimensions (cell only)
  3.5, 10, 25, 50 kN models: 57 mm diameter x 80 mm height
  100 kN model: 82 mm diameter x 110 mm height.
- Weight (approx.):
  3.5, 10, 25, 50 kN models: 5 kg approx
  100 kN models: female M20 x 1.5

Ordering information
- 28-WF0370/T: External load cell, 3.5 kN capacity.
- 28-WF0373/T: External load cell, 10 kN capacity.
- 28-WF0375/T: External load cell, 50 kN capacity.
- 28-WF0376/T: External load cell, 100 kN capacity.

Submersible load cells

<table>
<thead>
<tr>
<th>Load cell product code</th>
<th>Capacity (kN)</th>
<th>Compatible triaxial cells</th>
<th>Ram diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-WF6350</td>
<td>1.0</td>
<td>28-WF4050</td>
<td>15.5</td>
</tr>
<tr>
<td>28-WF6352</td>
<td>5.0</td>
<td>28-WF4070, 28-WF4100, 28-WF4150</td>
<td>25.0</td>
</tr>
<tr>
<td>28-WF6354</td>
<td>10.0</td>
<td>28-WF4170, 28-WF4171</td>
<td></td>
</tr>
<tr>
<td>28-WF6351</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28-WF6353</td>
<td>5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28-WF6355</td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28-WF6356</td>
<td>25.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ordering information
- 28-WF6350: Submersible load cell, 1 kN capacity, complete with 15.5 mm diameter ram.
- 28-WF6351: As above but with 25 mm diameter ram plus extension kit for small samples.
- 28-WF6352: Submersible load cell, 5 kN capacity, complete with 15.5 mm diameter ram.
- 28-WF6353: As above but with 25 mm diameter ram plus extension kit for small samples.

Note: in case the submersible is supplied complete with data acquisition system, then a traceable calibration certificate is available on request. For ordering, add the suffix ‘C’ to the relevant product code (e.g. 28-WF6350/C).
Axial displacement transducers and mounting brackets

Linear potentiometric transducers are used with various types of testing equipment, such as consolidation apparatus, shear testing machines and conventional triaxial testing systems, to measure sample deformation.

Volume change apparatus

This apparatus, when connected to a suitable display or data acquisition system, measures change in sample volume by providing an electrical signal directly proportional to the volume of water flowing through the unit. The apparatus comprises a piston connected to a 25 mm linear potentiometric transducer, sealed against a precision-machined calibration chamber so that the linear movement of the piston is exactly proportional to the volume of water in the calibration chamber. The apparatus has a front control panel with a reversing valve system to measure the water flow in both directions.

Technical specifications

- Basic capacity: 100 cm³
- Transducer input: up to 12 V DC
- Accuracy: ± 0.1 ml
- Dimensions: 260 x 280 x 400 (w x d x h)
- Weight: 5 kg (approx.)

Ordering information

28-WF4410
Automatic volume change apparatus.

Note: in case the volume change apparatus is supplied complete with data acquisition system, then a traceable calibration certificate is available on request. For ordering, add the suffix “C” to the relevant product code (e.g. 28-WF4410/C).

Pressure transducers

See pag 45

Note: in case pressure transducer is supplied complete with data acquisition system, then a traceable calibration certificate is available on request. For ordering, add the suffix “C” to the relevant product code (e.g. 28-WF6300/C).
Measurement of the maximum shear modulus (Gmax)

Bender elements
Bender elements allow to measure the maximum shear modulus (Gmax) of a soil sample and from this data to evaluate the stiffness of a soil. Gmax is generally associated with shear strain levels of about 0.001% and is a key parameter in small strain dynamic analyses, such as those to predict soil behavior or soil structure interaction during earthquakes, explosion or machine and traffic vibrations.

The piezoceramic bender element is an electro-mechanical transducer, which is capable of converting mechanical energy (movement) either to or from electrical energy. The single bender element consists of two thin piezoceramic plates, which are rigidly bonded together with conducting surfaces between them and on the outsides.

The polarization of the ceramic material in each plate and the electrical connections are such that when a driving voltage is applied to the element, one plate elongates and the other shortens. The net result is a bending displacement, which is greater in magnitude than the length change in either of the two layers. On the other hand, when the bender element is forced to bend, one layer will go into tension and the other into compression: this will result in an electrical signal, which can be measured.

The soil application the bender elements are encapsulated and mounted into inserts, which are fixed into the pedestal and top cap of a triaxial cell. They protrude edge-first into the soil specimen as cantilevered. When excited the bender element bends from side to side pushing the soil in a direction perpendicular to the length of the element and thus having a large coupling factor with the soil. This produces a shear wave, which propagates parallel to the length of the element into the soil sample. On the other end of the soil sample another bender element is forced to bend and produces an electrical signal that can be measured.

Theory on shear wave propagation in an elastic body tells us that the value of the shear modulus Gmax of the soil from measurement of shear wave velocity Vs is given by:

\[ G_{\text{max}} = \rho \cdot (V_s)^2 \]

where \( \rho \) is the mass density of the soil sample. The system consists of a transmitter, which is energized to produce the shear waves through the soil sample, and the receiver that receive the electrical signal.

Operating principle

The travel time of the shear wave from the transmitter to the receiver is determined via a specific software that allows the user to quickly and easily calculate the shear wave velocity.

The complete power and measuring system 28-WF4190 includes:

- Waveform generator
- Analogic PC interface with virtual oscilloscope software
- Connecting cables
- Personal Computer is not included
Ordering information

Models for compression testing only

28-WF4057/B
Bender elements, 50 mm top cap and base pedestal, for 70 mm diameter cell.

28-WF4077/B
Bender elements, 70 mm top cap and base pedestal, for 70 mm diameter cell.

28-WF4077/B1
Bender elements, 70 mm top cap and base pedestal, for 100 mm diameter cell.

28-WF4107/B
Bender elements, 100 mm top cap and base pedestal, for 100 mm diameter cell.

28-WF4157/B
Bender elements, 150 mm top cap and base pedestal, for 150 mm diameter cell.

Models for extension and compression testing (vacuum type)

28-WF4058/B
Bender element, 50 mm vacuum top cap and base pedestal for 70 mm diameter cell.

28-WF4078/B
Bender element, 70 mm vacuum top cap and base pedestal, for 70 mm diameter cell.

28-WF4078/B1
Bender element, 70 mm vacuum top cap and base pedestal, for 100 mm diameter cell.

28-WF4108/B
Bender element, 100 mm vacuum top cap and base pedestal, for 100 mm diameter cell.

28-WF4158/B
Bender element, 150 mm vacuum top cap and base pedestal, for 150 mm diameter cell.

Accessories

28-WF4190
Power and measuring system. 110-230 V, 50-60 Hz, 1 ph.

The bender elements have to be powered by a waveform signal generator. The output signal is converted into digital and transmitted to a PC via an interface and processed with the virtual oscilloscope software. The complete system includes waveform generator, analogic-PC interface with virtual oscilloscope software and connecting cables. PC not included.
Local strain measurement in triaxial testing

Main features

- Suitable for specimen diameters from 38 to 150 mm
- Maximum working pressure of 3500 kPa
- Light and compact construction with reduced dimensions
- For use with Banded triaxial cells fitted with suitable upgrading kits and Double-wall triaxial cells
- Vertical and radial deformation measured directly on the triaxial test specimen
- Suitable for static and dynamic data acquisition by triaxial systems

Local strain transducers

In conventional triaxial testing the stiffness of a soil specimen is determined by external measurement of displacement. Such measurements are subject to errors caused by deflections of the loading system and bedding of the porous stone onto the ends of the specimen.

Local vertical and radial strain transducers avoid these problems by providing the opportunity to measure the deformation, with high accuracy, directly on the triaxial test specimen.

Local strain transducers are supplied in a kit which includes one radial and two vertical transducers suitable for 38, 50, 70, 100 and 150 mm specimen diameters. Mounting accessories such as radial belt, mounting brackets and jig are also included.

All the models are supplied with dedicated in-line interface suitable for static or dynamic test, see the ordering information.

For more detailed information concerning the operating principle visit our web site.

Technical specifications

- Input voltage: 10 V
- Output voltage (ratiometric): ± 350mV (radial); ± 950mV (vertical)
- Accuracy (average): better than ± 0.5% FRO
- Temperature coefficient: ± 0.02/FRO/°C
- Weight: from 9 to 95 g (approx.)

Ordering information

Models for static testing

28-WF4039/KM
Local strain transducer kit for 38 mm diameter samples with two vertical and one radial miniature “on-specimen” transducers, radial belt, axial fixing pads and plugs.

28-WF4059/KM
As above but for 50 mm diameter samples.

28-WF4079/KM
As above but for 70 mm diameter samples.

28-WF4109/KM
As above but for 100 mm diameter samples.

28-WF4159/KM
As above but for 150 mm diameter samples.

Models for dynamic testing (in the Dynamic triaxial system)

28-WF4039/KN
Local strain transducer kit for 38 mm diameter samples with two vertical and one radial miniature “on-specimen” transducers, radial belt, axial fixing pads and plugs.

28-WF4059/KN
As above but for 50 mm diameter samples.

28-WF4079/KN
As above but for 70 mm diameter samples.

28-WF4109/KN
As above but for 100 mm diameter samples.

28-WF4159/KN
As above but for 150 mm diameter samples.

Note: all the transducers mentioned above can be supplied, on request, with a traceable calibration certificate. For ordering, add the suffix “C” to the relevant product code (e.g. 28-WF4039/KMC).

Calibration device for On-sample transducers (see page 69)
Specimen consolidation

**main features**

- Allows simultaneous anisotropic consolidation of three triaxial specimens
- Reduces the testing time when only one triaxial compression machine is available
- Fits triaxial cells for specimens up to 100 mm diameter
- Ergonomic design for better use of space in the laboratory
- Suitable for other makes of triaxial cell (with little adjustment)

**Accessories**

**Slotted weights**

**28-WF0493/1**

Set of weights for specimens from 35 to 70 mm diameter.
Each set, suitable for a single frame with a Beam loading device 28-WF0493/3, comprises:
- 4 x 250 g Slotted steel weights
- 4 x 500 g Slotted steel weights
- 4 x 1 kg Slotted steel weights
- 4 x 2 kg Slotted steel weights
- 4 x 4 kg Slotted steel weights

**28-WF0493/2**

Additional set of weights for specimens up to 100 mm diameter.
Each set, suitable for a single frame with a Beam loading device 28-WF0493/3, can be used in addition to the 28-WF0493/1 weight set for anisotropic consolidation of large specimens. The set consists of four 8 kg slotted steel weights.

**Beam loading device**

**28-WF0493/3**

Beam loading device, 10:1 ratio.
Used to amplify the vertical load to be applied to the specimen. The lever is supplied with a screw jack support with handle. Three units must be ordered for one 28-WF0493.

**Dial gauges and displacement transducers for measuring axial displacement**

These devices should be selected according to the specimen size and type of measurement system: either analogue with dial gauges or electronic with displacement transducers connected to suitable data acquisition equipment.

**30-WF6402**

Dial gauge, 30x0.01 mm.

**30-WF6403**

Dial gauge, 50x0.01 mm.

**30-WF6208**

Vertical displacement transducer, 25 mm travel.

**30-WF6209**

Vertical displacement transducer, 50 mm travel.

**30-WF1048/T**

Mounting bracket for dial gauges and displacement transducers.

**Locking device**

**28-WF0410/A4**

Piston locking device to hold the piston and top cap in place on the specimen. Only for triaxial cells 28-WF0410/A, 28-WF0411/A and 28-WF0416/A - the device is not necessary with the other triaxial cells.

**Standards**

ASTM D4767 | D7181 | BS 1377:8 | CEN-ISO/TS 17892:9

**28-WF0493**

Three-place consolidation bench for triaxial cells.

This apparatus has been designed to reduce the testing time for triaxial tests when only one compression machine is available. With this equipment it is possible to perform the consolidation stage of three triaxial specimens at the same time for CU and CD tests under anisotropic conditions. The apparatus consists of a steel bench complete with three load frames and centering platens, which fit any of our triaxial cells for specimens from 35 to 100 mm diameter. Each consolidation frame can be equipped with a beam loading device to reduce the number of dead weights required for anisotropic consolidation (see Accessories). Weights can be placed on both the centre hanger and on the lever hanger.

The apparatus has to be completed with vertical displacement gauges or transducers (which connect to data acquisition and processing systems for soil mechanics), and slotted weights and pressure system for cell and back pressure.

Overall dimensions: 1300 x 800 x 970 mm (w x d x h)
Weight: 145 kg (approx.)
Determination of permeability of normal and contaminated soil samples

**Permeability testing system for water-saturated porous materials**

The system consists of a number of standard testing items which are listed in the following table and described elsewhere in this catalogue.

The table below gives a typical list of the parts and accessories required for a system performing triaxial permeability tests on 70 mm diameter samples*.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Q.ty</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-WF4070</td>
<td>Banded triaxial cell for 70 mm diameter samples</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4071/7</td>
<td>Pedestal for 70 mm diameter samples</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4072/A</td>
<td>Top cap for 70 mm diameter samples, with drainage leads</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4074</td>
<td>Pair of porous discs for 70 mm diameter samples</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4075</td>
<td>Rubber membranes (10 pieces) for 70 mm diameter samples</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4076</td>
<td>O-rings (10 pieces) for 70 mm diameter samples</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4077</td>
<td>Membrane stretcher for 70 mm diameter samples</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4078</td>
<td>O-ring placing tool for 70 mm diameter samples</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4079</td>
<td>Two-part split mould for 70 mm diameter samples</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4080</td>
<td>Two-part split former for 70 mm diameter samples</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4081</td>
<td>Filter discs (100 pieces) for 70 mm diameter samples</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4082</td>
<td>Hand sampler for 70 mm diameter samples</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4083</td>
<td>Pressure transducer, 1000 kPa</td>
<td>2</td>
</tr>
<tr>
<td>28-WF4084</td>
<td>Geodatalog 8, data acquisition unit</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4085</td>
<td>Set of four cables</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4086</td>
<td>Triaxial panel for three pressure lines</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4087</td>
<td>Digital pressure gauge</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4088</td>
<td>Air/water bladder cylinder</td>
<td>3</td>
</tr>
<tr>
<td>28-WF4089</td>
<td>Volume change apparatus</td>
<td>2</td>
</tr>
<tr>
<td>28-WF4090</td>
<td>De-airing tank, 23 litre capacity</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4091</td>
<td>Vacuum pump</td>
<td>1</td>
</tr>
<tr>
<td>86-D2005</td>
<td>Air drying unit</td>
<td>1</td>
</tr>
<tr>
<td>86-D0819</td>
<td>Silica gel with indicator, 1000 g</td>
<td>1</td>
</tr>
<tr>
<td>86-D2064</td>
<td>Rubber tube for vacuum</td>
<td>2</td>
</tr>
<tr>
<td>28-WF4101</td>
<td>Valve panel for de-airing tank</td>
<td>1</td>
</tr>
<tr>
<td>86-D2015</td>
<td>Air compressor</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4102</td>
<td>Water trap for air compressor</td>
<td>1</td>
</tr>
<tr>
<td>28-WF4103</td>
<td>Nylon tube ID 6 x OD 8 mm, 20 m</td>
<td>2</td>
</tr>
</tbody>
</table>

* Obviously the test can be performed with other sample diameters by substituting the items that are sample size dependent with those of the required size.
Permeability cell for contaminated soil samples

This model is used for contaminated soil samples. Made entirely of stainless steel, it has to be used with the toxic interface chamber to avoid toxic permeants from entering the control panel. This also prevents contact of air with the permeant so that no toxic or corrosive vapors can escape into the laboratory.

The cell can be fitted with accessories for 70 and 100 mm diameter samples.

Ordering information

28-WF0194/B
Permeability cell with stainless steel valves for use with contaminated soils.
Dimensions: 300 mm diameter x 355 mm height (approx.)
Weight: 5 kg (approx.)

28-WF0194/3
Toxic interface chamber.
Weight: 3 kg (approx.)

Accessories
Top caps, base pedestals and sample accessories

<table>
<thead>
<tr>
<th>Diameter sample</th>
<th>70 mm</th>
<th>100 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top cap and base pedestal for</td>
<td></td>
<td></td>
</tr>
<tr>
<td>contaminated materials</td>
<td>28-WF0194/B1</td>
<td>28-WF0194/B2</td>
</tr>
<tr>
<td>Porous discs</td>
<td>28-WF4074</td>
<td>28-WF4104</td>
</tr>
<tr>
<td>Membranes</td>
<td>28-WF4075</td>
<td>28-WF4105</td>
</tr>
<tr>
<td>O-rings</td>
<td>28-WF4076</td>
<td>28-WF4106</td>
</tr>
<tr>
<td>O-ring placing tool</td>
<td>28-WF4071/B</td>
<td>28-WF4101/B</td>
</tr>
<tr>
<td>Membrane stretcher</td>
<td>28-WF4071/A</td>
<td>28-WF4101/A</td>
</tr>
<tr>
<td>Two part split former</td>
<td>28-WF4071/D</td>
<td>28-WF4101/D</td>
</tr>
<tr>
<td>Hand sampler</td>
<td>28-WF4071/G</td>
<td>28-WF4101/G</td>
</tr>
</tbody>
</table>

Permeability tests in triaxial cell with contaminated water

De-Aired Water
Compressed Air

Permeability Cell
Panel

Drainage
Contaminated Water
AUTOTRIAX 2
Automatic triaxial tests system

**Main Features**

- Automatic execution of up to 6 independent triaxial tests from start to finish with only one PC
- Type of tests: total and effective stress, stress path, \( K_0 \), permeability and unsaturated soils
- High-speed PC closed loop control for continuous monitoring and instantaneous reaction of systems components
- User-friendly software for remote control and test procedure
- Ideal solution for high demands laboratories which requires high productivity and reliability
- Space efficiency design
- No need of air compressor (with exception of unsaturated soils tests)

**Typical AUTOTRIAX 2 configuration for effective stress and stress path**

**The optimization of advanced technologies for high efficiency triaxial tests**

**Standards**

- BS 1377:7 | ASTM D2850 | ASTM D4767 | BS 1377:8 | BS 1377:6 | ASTM D7181

The AUTOTRIAX 2 is an advanced triaxial testing system that can automatically perform up to 6 entire and independent tests at the same time, from start to finish, without any human intervention.

AUTOTRIAX 2 can perform different kinds of triaxial tests such as:
- Total and effective stress tests:
  - UU (unconsolidated undrained) BS and ASTM standards
  - CU (consolidated undrained) BS and ASTM standards
  - CD (consolidated drained) BS and ASTM standards
- Stress path tests following MIT and Cambridge methods;
- \( K_0 \) anisotropic volume controlled tests;
- Permeability tests in triaxial cells according to BS and ASTM standards
- Unsaturated soil testing with control of matric suction using the axis translation method.
A typical automatic triaxial configuration comprises:

- Load frame and triaxial cell with accessories: a suitable model can be selected from our range (see triaxial load frames and triaxial cells banded or standard) or, alternatively, existing machines and cells can be used, after compatibility check with our specialists;
- Data acquisition and control unit connected to a PC (using a LAN network);
- Hydromatic 2 pressure/volume controllers with automatic open/close valves: the pressure controllers can reach up to 3500 kPa and have a volume capacity of 250 cc;
- Triaxial test automatic control and processing software.

The AUTOTRIAX 2 configurations can be extended and expanded in subsequent steps in order to control further tests by adding the relevant components. These operations can be easily made on site by simply configuring the user-friendly software, like a plug-and-play system.

The closed-loop feedback control system monitors the component status continuously in order to react to any change in the parameters pre-set for each test stage.

More than 30 system configurations are available. A practical guide for the most typical and common configurations limited to the part required for the main components is shown at pag 65.
Data acquisition and Control Unit

These are the brains of the AUTOTRIAX 2 system, transmitting data and information between the software and all the active components such as the pressure controllers and Tritech triaxial load frame. The units are produced in four different versions to offer maximum flexibility. They can be stacked vertically, making them very space-efficient, and power connectors of multiple units can be daisy-chained together, allowing them all to be run from a single mains socket. Transducer calibrations are saved directly in the firmware of the units.

29-WFD1A2
Master unit
A Master unit is always required, whatever combination of systems you want to put together. It has four active control channels for connecting the transducers that are needed for feedback to the software (for controlling vertical load or displacement and cell and back pressure) and eight passive channels for connecting a pore pressure transducer plus any other additional transducers, including local strain measuring devices. The Tritech compression frame, Hydromatic 2 pressure/volume controllers and solenoid valves (for opening and closing the pressure lines) also connect to the unit.

One Master unit is all that is needed for a single standard effective stress system.

Connections:
- 2 Hydromatic pressure/volume controllers
- 1 Tritech compression frame
- 12 transducers
- 1 solenoid valve

29-WFD0A1
Pressure extension unit
Used in addition to a Master unit, this extension unit provides control for one extra pressure system, with connections for a pressure transducer, solenoid valve and Hydromatic 2 pressure/volume controller, plus three spare passive transducer channels. It could be used, for example, in a system running permeability tests where three controlled pressures are required.

Connections:
- 1 Hydromatic pressure/volume controller
- 4 transducers
- 1 solenoid valve

29-WFD0A3
Triple pressure extension unit
Used in addition to a Master unit, this extension unit provides control for three extra pressure systems, with connections for three pressure transducers, solenoid valves and Hydromatic 2 pressure/volume controllers, plus nine spare passive transducer channels.

Connections:
- 3 Hydromatic pressure/volume controllers
- 12 transducers
- 3 solenoid valves

29-WFD0A1/UNS
Pressure extension unit for unsaturated test module only
Used in addition to a Master unit, this extension unit provides control for one air pressure system, with connections for a pressure transducer, solenoid valve and Servoflow Air pressure controller. There is also a connection for an Automatic Volume Change device to measure the change in cell volume, plus two spare passive transducer channels.

Connections:
- 1 Servoflow
- 4 transducers
- 1 solenoid valve
- 1 Automatic Volume Change device
Specifications
- Analogue/digital converter: 16-bit
- Additional transducer gain ranges: +/-20 mV and +/-10 V
- Ethernet connection to PC: 100 Mb
- Dimensions: WFD1A2 or WFD0A3: W 330 x D 240 x H 144 mm, WFD0A1 or WFD0A1/UNS W 330 x D 240 x H 70mm
- Weight: 6 kg (29-WFD1A2/29-WFD0A3) 4 kg (29-WFD1A1/29-WFD0A1/UNS)
- Power supply: 110-240 V 50/60 Hz, 1ph

Note: the sensors connected to these units can be supplied, on request, complete with a traceable calibration certificate

Ordering information
29-WFD1A2
AUTOTRIAX 2 Data acquisition and control unit: Master unit

29-WFD0A3
AUTOTRIAX 2 Data acquisition and control unit: Triple pressure extension unit

29-WFD0A1
AUTOTRIAX 2 Data acquisition and control unit: Pressure extension unit

29-WFD0A1/UNS
AUTOTRIAX 2 Data acquisition and control unit: Air pressure extension unit for unsaturated testing

Accessories
29-WF4645/COMP
High specification desktop PC with LCD monitor. Operating system MS Windows preinstalled. 8 port LAN HUB converter for AUTOTRIAX 2 connection. 110-240V/50-60Hz/1Ph

26-WF4645
LAN Hub with 8 ports for Wykeham Farrance devices.
Pressure and volume controller

Hydromatic 2 is used to generate water pressure in and around the test specimen. It is driven by a stepper motor, which enables the unit to measure volume change. The unit consists of a hydraulic piston, driven by a ball-screw and gearbox, mounted on a ball-slide, and is managed under closed-loop control by the Data acquisition and control unit. A 3500 kPa capacity pressure transducer and its de-airing block are included. The status of the unit is monitored by the AUTOTRIAX 2 software and safety microswitches are installed to prevent over-travel beyond mechanical limits or capacity. Each Hydromatic 2 also includes a solenoid valve which is installed on the triaxial cell base to open and close the pressure lines. They are powered and controlled by the Data acquisition and control units.

For a standard effective stress system, two Hydromatic 2 units are required one for cell pressure and one for back pressure.

**Specifications**
- Output pressure: 3500 kPa
- Volume capacity: 250 cc
- Pressure resolution: 0.1 kPa
- Volume resolution: 0.001 cc
- Pressure accuracy: 0.1% of full scale
- Closed-loop control of pressure: regulated to 0.1 kPa
- Closed-loop control of volume: regulated to 0.001 cc
- Dimensions: W 740 x D 140 x H 160 mm
- Weight: 5 kg
- Power supply: 110-240 V 50/60 Hz, 1 ph
- Solenoid valve speed: <10 mm/s

**Accessories**

29-WF4334
Water distribution panel for automatic triaxial testing

29-WF4191
Nylon tubing 6 mm bore x 8 mm outside diameter, 10 m length

29-WF6302/A
Pressure transducer 3500 kPa capacity for pore water pressure

29-WF6310
De-airing block for connecting a pressure transducer to a banded triaxial cell
Air pressure controller and water volume change for unsaturated testing

**29-WF4511**  
Servoflow air pressure controller  
(for unsaturated testing module only)

The Servoflow is an electro-pneumatic pressure controller that generates air pressures of up to 1000 kPa for one pressure line. Managed under closed-loop control by the Data acquisition and control unit that it is connected to, it consists of a chassis housing an electronic pressure regulator. The regulator reduces the supply air pressure to a regulated output which is directly proportional to an electrical input signal received from the control unit. In the AUTOTRIAX 2, the Servoflow is used to provide air pressure to the sample for unsaturated soils testing systems, based on the axis translation method.

**Specifications**

**Servoflow air pressure controller**
- Output pressure: 1000 kPa
- Pressure resolution: 0.1 kPa
- Pressure accuracy: 0.1% of full scale
- Closed-loop control of pressure: regulated to 0.1 kPa
- Dimensions: W 225 x D 210 x H 140 mm
- Weight: 5 kg
- Power supply: 110-240V, 50/60Hz, 1ph

**29-WF4412**  
Automatic Volume Change apparatus  
measuring the volume change of an unsaturated soil sample in the double wall triaxial cell.  
(for unsaturated test module only)

The device is used for unsaturated soils testing with the double wall triaxial cell to measure the volume change of the soil sample. The design is based on the standard volume change device with integral solenoid valves that allow the flow direction and bypass functions to be controlled by the pressure extension unit - unsaturated. The device has a physical capacity of 100 cc but due to the automatic switching, it can measure volume change continuously. It is powered directly by the pressure extension unit - unsaturated and has LEDs on the front panel to show the flow status.

**Specifications**

**Automatic Volume Change**
- Capacity: 100 cc
- Accuracy: 0.1 cc
- Maximum operating pressure: 2000 kPa
- Dimensions: W 280 x H 400 x D 260 mm
- Weight: 9 kg
- Power supply: 24V DC direct from the pressure expansion unit - unsaturated.

**AUTOTRIAX 2 — Schematic layout for unsaturated test using axis translation method**
The AUTOTRIAX 2 software is a comprehensive and user-friendly interface between the operator and the testing system. Installed on a PC communicating with the system over a fast Ethernet connection, the software can be used to configure the system(s), calibrate transducers, specify test parameters, set system limits and control the system during a test, either manually or automatically. Due to the flexibility of the software, each triaxial system can either have its own, dedicated PC, or multiple systems can be run from one PC.

Three different software are available:

- **Device Management Software**
  - This base software is supplied as standard with the AUTOTRIAX 2 system
  - Designed for setting up the configuration and allocation of the components of each triaxial system
  - Up to 11 points of calibration can be recorded with automatic polynomial best fitting (up to 7th order)
  - The calibration data of different transducers can be stored for the same channel and easily recalled when connected
  - Full scale limits can be set for all the transducers and pressure/volume controllers to prevent over-travel and possible damage
  - Management of Hydromatic 2 pressure/volume controllers and Tritech compression frames outside of testing procedures (e.g. controller tuning, water refilling of pressure controllers)

- **Test software**

- **Template for data processing**

**Main features**

- Comprehensive and user-friendly interface between the operator and the testing systems
- Up to 6 independent triaxial systems can be run at the same time from a single computer or multiple computers
- Real-time display of all the transducers and calculated data for all live tests, with plots of measured and calculated data, selectable by the user
- Automatic control in real time of standard and non-standard tests (e.g. stress path tests)
- Calibration and verification procedures for all the transducers
- User-defined range limits and limit alarms for all the sensors and controllers
- Data processing and reporting facility with customisable language
Test software
Test software comprehends different modules.
All the test modules include the following basic features:
- Input of project, sample and test details and parameters
- Set up of test sequences, including selection of automatic or manual control
- Real-time data for all transducers are displayed throughout the test, as well as all calculated stresses, strains, ratios, volume change etc. Updated specimen dimensions are displayed at the end of each stage
- Graphical test data can be displayed on four separate user-definable graphs, each with up to six data series
- Manual control panel to control the solenoid valves, Hydromatic 2 and TriTech units before starting the test
- Transducer readings and zero-set options displayed in large font on a separate panel, enabling the user to easily view the readings from a distance
- Review option to look at data and graphs for tests already completed during a live test
- Graphical test data can be displayed on four separate user-definable graphs, each with up to six data series
- Graphical test data can be displayed on four separate user-definable graphs, each with up to six data series
- Review option to look at data and graphs for tests already completed during a live test
- Data processing and reporting conforming to the relevant standards by quickly and easily importing test data into the Microsoft Excel ® AUTOTRIAX 2 triaxial template
- Data processing and reporting conforming to the relevant standards by quickly and easily importing test data into the Microsoft Excel ® AUTOTRIAX 2 triaxial template
- Test pause option (automatic or by the user) for conditioning/refilling the Hydromatic 2 pressure/volume controllers
- Simultaneous and independent control of axial stress (displacement or load controlled), cell pressure, back pressure, base pressure (in the Permeability Module) and air pressure (in the Unsaturated Soils Module)
- Alarm display when travel or capacity limits of the system components are reached
- Set up of additional limits to stop or to hold the stress/strain conditions during the test

EFFECTIVE and TOTAL STRESS
This software module, supplied as standard, includes manual or automatic control of saturation, consolidation and shear stage, according to ASTM and BS Standards:

Saturation
(ASM D4767, ASTM D7181, BS 1377:Part 8)
Under manual control, three different options for running the stage are available:
- Increments of cell pressure only
- Increments of cell and back pressure
- Simultaneous ramps of cell and back pressure
Alternatively, automatic control can be selected to run the complete stage according to BS1377:8 Clause 5.3, BS1377:8 Clause 5.4 or ASTM 4767/7181. Data monitoring and processing consists of:
- Multiple plot options including: cell pressure vs. pore pressure / B values; cell, back and pore pressure vs. time; volume change vs. time
- Summary table and plot of all the saturation steps performed

Consolidation
(ASM D4767, ASTM D7181, BS 1377:Part 8)
Automatic or manual isotropic consolidation with cell and back pressure targets set by the user. Data monitoring and processing consists of:
- Multiple plot options including: volume change and pore pressure dissipation vs. time
- Graphical fitting methods, according to the relevant standards, for the evaluation of the end of consolidation
- Data processing of T50/T100 to calculate speed for monotonic as for BS / ASTM.

CU/CD test monotonic shear
(ASM D4767, ASTM D7181, BS 1377:Part 8)
Automatic or manual shear stage (drained / undrained) using calculated or user-defined rate of strain and failure criteria in compression or extension
Data monitoring and processing consists of:
- Multiple plot options including: deviator stress, volume change, pore pressure vs. axial strain, MIT or Cambridge stress path

UU test monotonic shear
(ASM D2850, BS 1377:Part 7)
Automatic or manual undrained shear stage in compression, with rate of strain and cell pressure input.
STRESS PATH MODULE
   This optional software module is for the automatic or manual control of stress path stages, with independent control of axial and radial stresses. The module can be used together with the standard stages of saturation, isotropic consolidation and monotonic shear provided by the Effective Stress Test Module to carry out what is generally known as stress path testing. This package includes the following:
   - Total stress ramps
   - Back pressure ramps
   - MIT stress ramps to target values of $s$ and $t$
   - Cambridge stress ramps to target values of $p$ and $q$
   - Ramps to target change in axial displacement/strain
   - Ramps to target volume change
   - User-defined independent ramps / hold of deviator stress, cell pressure and back pressure
Data monitoring and processing consists of:
   - Multiple plot options including: total and effective stress, volume change, pore pressure vs. axial strain; MIT or Cambridge stress path

PERMEABILITY MODULE
   This optional software module is for the automatic or manual control of triaxial permeability stages in accordance with BS1377:Part 6 and ASTM D5084 methods A and D. The module is used together with the standard test stages of saturation and isotropic consolidation provided by the Effective Stress Test Module to carry out triaxial permeability tests. This package includes the following:
   - Control and measurement of base pressure
   - Measurement of permeability under a constant hydraulic gradient
   - Measurement of permeability under a constant rate of flow
Data monitoring and processing consists of:
   - Multiple plot options including: change of volume / mean flow rate vs. time
   - Evaluation tools to calculate in real time the permeability from the mean flow plot

K₀ MODULE
   This optional software module is for the automatic or manual control of K₀ stages, with closed-loop control of the cross-sectional area of the soil sample. The module can be used together with the standard test stages of saturation, isotropic consolidation and monotonic shear provided by the Effective Stress Test Module. This package includes the following:
   - Axial stress ramps with closed-loop control of radial stress to maintain the $K₀$ conditions
   - Radial stress ramps with closed-loop control of axial stress to maintain the $K₀$ conditions
   - $K₀$ conditions, controlled via the continuous monitoring of volumetric strain and axial strain
   - $K₀$ conditions, controlled via the continuous direct measurement of the sample diameter by a local radial strain "on-sample" transducer
Data monitoring and processing consists of:
   - Multiple plot options including: total and effective stress, volume change, pore pressure vs. axial strain, MIT or Cambridge stress path

UNSATURATED SOIL MODULE
   This optional software module is for the automatic or manual control of specific stages for unsaturated soils. The module is used together with the standard test stages of saturation, isotropic consolidation and monotonic shear provided by the Effective Stress Test Module to carry triaxial testing on unsaturated soils. Stress path stages can also be performed when the Stress Path Module has been purchased. This package includes the following:
   - Control and measurement of air pressure
   - Control of matric suction during consolidation, monotonic shear and stress path stages
   - Measurement of pore pressure using the axis translation method
   - SWCC (soil water characteristics curve) test stage
Data monitoring and processing consists of:
   - Multiple plot options including: matric suction/pressures vs. strain, matric suction vs. moisture content
   - Display of all unsaturated related stresses throughout the test

(1) An additional license must be purchased to unlock this module
(2) A vacuum top cap and submersible load cell must be used for tests with stages in extension
Template For Data Processing

The Triaxial Template is Excel®-based data processing software that has been specially designed for the AUTOTRIAX 2 testing system. Data for the entire test is imported at the click of a button, with individual worksheets created and completed automatically for each stage of the test. Test reports are generated conforming to the selected standard and can be printed.

- Automatic data importing
- Processing and reporting of results to BS or ASTM standards
- Includes presentation of Mohr circles and failure envelope with manipulation tools
- Triaxial permeability results can be post-processed to calculate the permeability value
- Possibility to plot a combined stress path graph of total and effective Cambridge and MIT stress path parameters over the whole test
- Can process multiple types of test*:
  - Unconsolidated Undrained (UU) triaxial - single, set of 3 or multistage
  - Consolidated Undrained triaxial (CU) - single, set of 3 or multistage
  - Consolidated Drained triaxial (CD) - single, set of 3 or multistage
  - Triaxial permeability
- CU and CD tests with any type of stage can be processed:
  - Saturation
  - Isotropic consolidation
  - Monotonic shear
  - Unsaturated (soil/water curve)
  - Stress path
  - $K_0$

*The types of test that can be processed depend on which modules of the AUTOTRIAX 2 software are licensed

Ordering Information

29-WFD1A2/SW1
Effective stress (CU / CD / UU) base test software with manual and automatic performance of saturation, consolidation and shear stages to ASTM and BS

29-WFD1A2/SW2
Activation code for Stress path test module with manual and automatic performance of stress path stages

29-WFD1A2/SW3
Activation code for $K_0$ test module with manual and automatic performance of $K_0$ stages

29-WFD1A2/SW4
Activation code for Unsaturated test module including manual and automatic modes for testing using the axis translation method

29-WFD1A2/SW5
Activation code for Permeability test module with manual and automatic performance of constant rate of flow and constant hydraulic gradient permeability stages

29-WFD1A2/TM
Triaxial Excel® Template for data processing software that has been specially designed for the AUTOTRIAX 2 testing system.

Automatic CRS and Hydrocon

Additional Autotriax 2 software for performing CRS (Constant Rate of Strain) and Hydraulic consolidation are available on request
Typical configurations

**AUTOTRIAX 2**

Automatic triaxial system to perform
Effective stress - Stress path - $K_0$ tests

**AUTOTRIAX 2**

Automatic triaxial system to perform
Effective stress - Stress path - $K_0$ - Permeability tests

**AUTOTRIAX 2**

Automatic triaxial system to perform
Unsaturated tests
Typical configurations (continued)

The following summary table is intended as a practical guide for the most typical and common configurations, limited to the part required for the main components, to cover different types of triaxial tests. However, due to the high flexibility of the system, many other configurations not included in the table here below, can be managed, according to the requirements of the user.

To use the table below, first select the type of test starting from the left, then select the number of frames and triaxial cells that will be managed simultaneously, then continue on the same row to find the main hardware components and software packages. If a single frame is dedicated to a single triaxial cell, the test can be controlled automatically from start to end. If a single frame is shared with several triaxial cells, the system can manage automatically saturation and isotropic consolidation simultaneously on the different triaxial cells.

The system shall be completed with the following components:
- Triaxial load frame, see TRITECH model page 28
- Banded triaxial cells and accessories, see page 33
- Sensors: Displacement transducer, pressure transducers, load cells, see page 45, 47
- Pressure system and water distribution panel see page 40
- De-airing water system see page 42

If additional measurements are required, the system can be upgraded with the following:
- Local strain measurements see page 50
- Bender elements see page 48

The system shall be completed with the following components:
- Triaxial load frame, see TRITECH model page 28
- Banded triaxial cells and accessories, see page 33
- Sensors: Displacement transducer, pressure transducers, load cells, see page 45, 47
- Pressure system and water distribution panel see page 40
- De-airing water system see page 42

If additional measurements are required, the system can be upgraded with the following:
- Local strain measurements see page 50
- Bender elements see page 48

<table>
<thead>
<tr>
<th>Test</th>
<th>Software</th>
<th>TX cell</th>
<th>Frame</th>
<th>E</th>
<th>S</th>
<th>K0</th>
<th>P</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Key:
- E: Total/effective stress according to BS and ASTM standards
- S: Stress path (vacuum top cap and submersible load cell are required for tests with stages in extension)
- K0: Consolidation (vacuum top cap and submersible load cell are required for tests with stages in extension)
- P: Permeability (the items indicated in the table are intended to perform permeability tests in one cell)
- U: Unsaturated (the test requires the double-wall triaxial cell; the items indicated in the table are intended to perform unsaturated test in one cell)

*Note: In these configurations it is not possible to follow strictly the ASTM standards in the consolidation stage, where the axial compression of the specimen should be recorded continuously (ref. ASTM D4767 point 8.3.4). To perform this measurement in a fully automatic mode, a dedicated load frame for each triaxial cell fitted with submersible load cell and vacuum top cap is required.

Up to 6 independent systems are controller by the same PC.
8 independent input channels
Up to 8 instruments can work in a network creating a modular system with up to 64 independent channels.
LAN / Ethernet connection to PC via dedicated software
Compatible with load cells, pressure transducers, strain gauges, LDT / LVDT / potentiometric displacement transducers.
Effective resolution: 131000 points
Sampling rate up to 500 readings per second per channel
Numerical and graphical display of readings via PC software
The transducers can be grouped and combined by the user for matching different applications.
Possibility to perform various tests (e.g. shear, consolidation, triaxial, …) in parallel, each one having independent clock, channels and logging mode

**Geodatalog 8**

Multipurpose datalogger, with dedicated software

GEODATALOG 8 is a multipurpose data logger which works directly connected to a PC. Data are automatically transferred to PC in real time for live monitoring of the tests.

GEODATALOG 8 records and monitors in real time the measurements requested for Soil Mechanics testing, in particular:
- Consolidation
- Shear
- Triaxial
- Many others

It is compatible gauge load cells, pressure transducers, linear LDT transducers, LVDT conditioned transducers, with strain, potentiometric displacement transducers.

GEODATALOG 8 is conceived with a modular and flexible concept: up to 8 instruments can form a network and then create a modular system with up to 64 independent channels.

It is supplied complete with general purpose DATACOMM 2 PC software allowing remote calibration of the channels, and fully comprehensive data management.

GEODATALOG 8 should be always proposed complete with at least one set of 4 Lumberg-to-PS2 adaptor cables (see model 82-P9008/ELT).

**Technical specification**
- Requires connected PC
- Number of channels: 8
- Network mode: Up to 8 units
- Sampling rate: Up to 500 readings/second per channel
- Effective resolution: 131000 points
- Communication port: LAN / Ethernet
- Excitation (VEXC): from 1 V to 10 V for each couple of channels (up to 4)
- Datalogger input: 0-10 V, 0-20 mA
- Software: Included, DATACOMM 2
- Dimensions: approx. L x W x H (mm): 290 x 195 x 61
- Weight: approx. 1.6 kg
- Power supply: 110-220V, 50-60 Hz, 1 ph

**Main features**

- Geodatalog 8 network mode: up to 8 units
**Accessories**

**Electronic measurement device**
See pag 88

**Cable**

**82-P9008/ELT**
Set of four cables for connecting sensors to DATALOG8 (82-P9008) and GEODATALOG8 (30-WF6008)

**Extension cable**

**30-WF6042**
Transducer extension cable, 6 m length

**30-WF6044**
Transducer extension cable, 12 m length

**Lan Hub**

**26-WF4645**
LAN Hub with 8 ports for Wykeham Farrance devices.

**Data processing: Geo-Analysis Templates**

Sixteen templates for different tests and Standards have been developed specifically for processing test data recorded by the DATACOMM 2 software. The templates are MS Excel® based programs with easy-to-use functions for importing data files, calculating results, producing test reports that conforms to the relevant international Standards.

**DATACOMM 2 software** combines the active channels into customizable groups by the operator. Data acquisition for each group is an independent task which can be started/stopped automatically with specific acquisition and logging mode.

**ASCII format data export** is available for combination with our Geo-Analysis-Templates suitable for post-processing and printout of test certificates according to the most important international Standards. See data processing.

<table>
<thead>
<tr>
<th>Test</th>
<th>Standard</th>
<th>Ordering Information</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Consolidation</strong></td>
<td>Incremental loading</td>
<td>BS 1377:5, ASTM D2435</td>
</tr>
<tr>
<td></td>
<td>CRS</td>
<td>ASTM D4186</td>
</tr>
<tr>
<td></td>
<td>Hydraulic consolidation</td>
<td>BS 1377:6</td>
</tr>
<tr>
<td></td>
<td>SWCC - Hydraulic consolidation</td>
<td>-</td>
</tr>
<tr>
<td><strong>Shear</strong></td>
<td>Direct/residual</td>
<td>BS 1377:7</td>
</tr>
<tr>
<td></td>
<td>Ring</td>
<td>ASTM D3080</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ASTM D4647</td>
</tr>
<tr>
<td><strong>Triaxial</strong></td>
<td>Effective stress</td>
<td>BS 1377:8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ASTM D4767 - D7181</td>
</tr>
<tr>
<td></td>
<td>Total stress</td>
<td>BS 1377:7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ASTM D2850</td>
</tr>
<tr>
<td><strong>Other tests</strong></td>
<td>Permeability</td>
<td>BS 1377:6</td>
</tr>
<tr>
<td></td>
<td>CBR</td>
<td>BS 1377:4</td>
</tr>
<tr>
<td></td>
<td>Unconfined</td>
<td>ASTM D2166</td>
</tr>
</tbody>
</table>

Other templates are available for processing data gathered with different type of tests.
Calibration equipment for the geotechnical laboratory

Any laboratory needs to verify periodically the calibrations of their electronic measuring systems, in order to produce reliable and accurate results. Equipment for calibrating force, displacement, volume change and pressure measuring devices are described in this section.

**Force Measurement**
For calibration of force measuring devices we propose the following load cells fitted with digital readout unit, supplied complete with ACCREDIA calibration certificate according to EN ISO 376.

**Load cells**
- **30-WF0372/SIT**
  5 kN load cell complete with ACCREDIA calibration certificate* and stainless steel loading seat.
- **30-WF0373/SIT**
  50 kN load cell complete with ACCREDIA calibration certificate* and stainless steel loading seat.

* In order to issue the calibration certificate, the load cells must be ordered complete with the digital readout unit.

**Technical specifications**
- Linearity: ≤0.03%
- Hysteresis: ≤0.03%
- Repeatability: ≤0.01%

**Digital readout unit**
- **30-WF6601**
  Digital readout unit for load cells**.

**Pressure Measurement**
Pressure calibrations are performed with a digital pressure gauge, similar to model 30-WF6601, supplied complete with ACCREDIA calibration certificate.

- **30-WF6305/SIT**
  50 bar digital pressure gauge complete with ACCREDIA calibration certificate.

**Technical specifications**
- Linearity and hysteresis: ≤0.05%
- Internal resolution: 65000 div.
- Zero and peak function
- Auto power off function.
- Supplied with four 1.5 V AA size alkaline batteries.

**Volume Change**
Calibration of the volume change apparatus can be simply performed by weighing the water coming out of the device, using any digital balance with 0.01 g resolution, e.g. model 11-D0630/06

- **30-WF6305/SIT**
  Digital pressure gauge

**Technical specifications**
- Accuracy: ≤0.02%
- Standard resolution: (2mV/V) ± 25000 div.
- Internal resolution: ± 32000 div.
- Zero and peak functions
- Auto power off function.
- Supplied with four 1.5 V AA size alkaline batteries.
- Typical battery life 1 year.

**30-WF6305/SIT digital pressure gauge**

**30-WF6601 digital readout unit**
Displacement Measurement

Calibration of displacement measuring devices can be performed with either the analogue or digital micrometer 25 and 50 mm travel respectively, 0.001 mm resolution. They are both available, optionally, with a traceable calibration certificate.

Both types of micrometer basically consist of a stainless steel frame with two brackets: one for the transducer and the other for the micrometer gauge head. The bracket can hold transducers with nominal diameters of 8, 12, 19 and 22 mm, or 18 mm square.

Local Strain Measurement

These transducers are used to measure local strain in triaxial testing. The calibration is performed with a special device that can also be used for standard linear displacement transducers with up to 50 mm travel.

The set includes:
- Frame capable of positioning the micrometer horizontally and vertically
- Adaptors for both vertical and radial local strain transducers
- Holders for transducers with nominal diameters of 8, 12, 19 and 22 mm, or 18 mm square.

Technical specifications
- Max travel: 50 mm
- Resolution: 0.001 mm
- Dimensions: 260 x 60 x 100 mm (w x d x h)
- Weight: 1.5 kg (approx.)

Technical specification

<table>
<thead>
<tr>
<th>Product code</th>
<th>30-WF0652</th>
<th>30-WF0653</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Analogue/mechanical</td>
<td>Digital</td>
</tr>
<tr>
<td>Maximum travel, mm</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>Resolution, mm</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Dimensions, mm (w x d x h)</td>
<td>260 x 60 x 100</td>
<td>300 x 60 x 107</td>
</tr>
<tr>
<td>Weight, kg (approx.)</td>
<td>0.6</td>
<td>1.5</td>
</tr>
</tbody>
</table>

30-WF0652
Analogue micrometer, 25 mm travel x 0.001 mm resolution.
30-WF0652/C
As above with traceable certificate

30-WF0653
Digital micrometer, 50 mm travel x 0.001 mm resolution.
30-WF0653/C
As above with ACCREDIA certificate

30-WF0653/K
Calibration device for local strain transducers and standard linear displacement transducers up to 50 mm travel.
30-WF0653/KC
As above with ACCREDIA certificate
Dynamic testing systems

The various advanced systems proposed are intended to reproduce in the laboratory the same vibration, shock and cyclic forces to the soil sample, to give engineers a better understanding of how a soil material behaves under these unique situations.
The DYNATRIAX Dynamic Triaxial, FACT, Resonant Column/Torsional Shear and Cyclic Simple Shear systems can replicate unusual in-situ events in the laboratory:

**Construction**
The preservation of archaeological sediments and artefacts during construction. To establish the effects of past stress regimes on archaeological remains seen in their contemporary, in-situ context.
To maximize site stability and integrity, thereby enhancing the future preservation of archaeological remains. Laboratory studies will simulate past loading regimes as a consequence of the historic accumulation of debris and sediment and future loading based on a range of construction scenario.

**Liquefaction**
Liquefaction is a phenomenon that occurs in saturated soils, in which the space between individual particles is completely filled with water. This water exerts a pressure on the soil particles that influences how tightly the particles themselves are pressed together. When there is no dynamic activity, the water pressure is relatively low. However, during an earthquake, the shaking can cause the water pressure to increase to the point where the soil particles can readily move with respect to each other and the soil begins to behave as a liquid.

The phenomena and problems associated with liquefaction most commonly occur in saturated cohesionless soils, even if they contain a considerable amount of fines. In recent years particular attention has been focused on sloping ground conditions where, although there might be no risk of earthquake loading, a flow failure would have catastrophic consequences.

**Offshore**
Investigating the effect of waves on offshore structures, waterside buildings, harbours and pipelines. Wave effect and pipeline vibrations can be recreated.

**Blasting**
What effect does blasting have on structures in the areas surrounding a quarry or blast site? How are the foundations of these structures affected? The blasting signature can be used for testing the foundation material.

**Rail track**
What effect do vibrations have on buildings close to railway tracks? Trains are becoming faster, creating vibrations of greater frequency which are transmitted into the surrounding ground. Cyclic tests on the track subbase material can be performed.
Dynamic properties of soils such as stress-strain characteristics have been recognized a very important part of many aspects of construction design as maritime, seismic engineering, placement of foundations of machines or structures subjected to different dynamic interactions. The correct description of the soil behavior within the range of small deformations is also an extremely important element in the prediction of the movement of structures cooperating with subsoil, and thus has a great impact on the quality of the actual mapping of the internal forces in the structural system of the whole building, including foundations. Stiffness modules for very small deformations are now recognized as fundamental properties of the soil. For this reason, in geotechnical engineering we commonly use information obtained from laboratory and field dynamic and seismic tests to solve also conventional problems of interaction between the building and the subsoil.

Different systems are available to cover the wide range of deformations due to different causes. A summary table is presented here beside in order to show the different system and schematic representations of the different types of stresses.

### Dynamic Triaxial-Resonant Column/Torsional Shear-Cyclic simple shear

<table>
<thead>
<tr>
<th>System</th>
<th>Applications</th>
<th>Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>DYNATRIAX Dynamic Triaxial - FACT</td>
<td>Dynamic triaxial</td>
<td>ASTM D5311, ASTM D3999</td>
</tr>
<tr>
<td></td>
<td>Static triaxial: Total stress (Unconsolidated Undrained)</td>
<td>ASTM D2850, ASTM D4767, ASTM D7181, BS 1377.7, BS 1377.8</td>
</tr>
<tr>
<td></td>
<td>Effective stress: (Consolidated Undrained, Consolidated Drained) Stress path</td>
<td></td>
</tr>
<tr>
<td>Resonant Column</td>
<td>Resonant Column Torsional Shear</td>
<td>ASTM D4015</td>
</tr>
<tr>
<td>Cyclic Simple Shear</td>
<td>Static and Cyclic Simple Shear</td>
<td>ASTM D6528</td>
</tr>
</tbody>
</table>

![Dynamic Triaxial-Resonant Column/Torsional Shear-Cyclic simple shear](Image)
### Principle of the test

\[ E = \frac{\Delta q_{mp}}{e_{mp}} \]

\[ D = \frac{W_N}{4\pi \cdot W_s} \]

---

### System layout

- **ASTM D5311**
- **ASTM D3999**
- **ASTM D2850**
- **ASTM D4767**
- **ASTM D7181**
- **BS 1377:7**
- **BS 1377:8**

**74**

---

**82**

---

**85**
Dynamic triaxial systems

Standards
ASTM D7181 | ASTM D2850 | ASTM D3999 | ASTM D4767 | ASTM D5311 | BS 1377:7 | BS 1377:8 | AASHTO T307

Main features
- Capability to perform Static (effective stress and stress path), Dynamic and Unsaturated soil triaxial tests
- Three axis closed loop control for axial load or displacement, cell and back pressure
- Automatic compensation of cell/back pressure during dynamic stage
- Operating frequency up to 10 Hz depending on test and sample conditions
- Complete automation of all test stages using an high sensitivity closed loop P.I.D. feedback control
- Two dynamic load/displacement options: Up to ± 25 mm with ± 5kN double effect actuator or Up to ± 15 mm with ± 14kN double effect actuator
- Upgrade for bender elements testing and local strain measurements
- Standard and user-defined wave shapes, including those derived from in situ measurements (from violent earthquakes to sedate ocean waves)
- Management of transducer calibration and verification by software
- Test set-up by unique programmable multi stage test procedure: the test structure and parameters can be edited during the test according to the response of the soil specimen
- Manual and automatic emergency air shut-off function
The **DYNATRIAX** is a computer controlled servo-pneumatic system designed to perform the static and dynamic stages of a triaxial test.

The system manages three axes with closed loop control:
- Vertical load/displacement up to ± 25 mm (± 5 kN double effect actuator) or up to ± 15 mm (± 14 kN double effect actuator)
- Cell pressure up to 1000 kPa
- Back pressure up to 1000 kPa

The base system includes:

**Tritech 50 or Tritech 100 load machines**

The TRITECH digital loading machine is a microprocessor controlled drive system:
- Static load capacity: 50 kN or 100 kN
- Static vertical displacement up to 100 mm (machine travel)

**Actuator**

The double acting pneumatic actuator is digitally controlled and includes an integrated LVDT displacement transducer to control the position and the movement of the piston during the test.
- Dynamic load capacity: ±5 kN or ±14 kN
- Dynamic vertical displacement with travel up to ±25 mm or ±15 mm
- Operating frequency up to 10 Hz (depending on test and sample conditions)
- Min. air supply: 800 kPa
- Max. servo valve frequency: 70 Hz

**Data Acquisition, process & control system**

The CDC – Compact Dynamic Controller is a compact self contained unit that manages the three axis (vertical load/displacement, cell and back pressure) with a control loop rate of 10 kHz. It provides the automatic control of the system and drives the servo valve units of the three axis and two on/off valves, one connected to the drainage line and one connected to the air main supply of the system.

The CDC communicates with the PC through an Ethernet communication link (100 Mbit/s). The controller has sixteen transducers input channels, 16 bits ADC.

**PID control**

An extremely efficient algorithm with larger gain ranges gives enhanced sensitivity, making it easier to tune the system and achieving a more accurate wave-shape. The system includes manual and automatic amplitude controls which compensate for small changes that may occur in the system during cycling, ensuring that the required peak and valley levels are consistently maintained.

The tuning panel, with its user-friendly interface, provides all the tools necessary to optimize system control during static and cyclic test stages.
Software
Multitasking, user-friendly, Windows-based software is pre-installed on the computer supplied with the system. The software provides control of the following test stages and utilities of a cyclic triaxial test:

Saturation stage
Different methods of saturation can be performed, according to the relevant standards, through the application of incremental steps of cell and back pressure, with B value and volume change monitoring and summary table. Application of cell and back pressure ramps is also available.

Isotropic consolidation stage
Consolidation according to the relevant standards with continuous monitoring of volume change, pore pressure and degree of consolidation.

K0 consolidation stage
Application of axial stress at a constant rate of strain, with control of sample diameter using either:
- Direct measurement by radial belt with a local strain transducer
- Indirect measurement with continuous monitoring of axial and volumetric strains

Stress path stage
Drained or undrained load-controlled ramping to targets of:
- Total horizontal and vertical stress
- s & t (average stress and shear stress)
- p & q (mean normal stress and deviator stress)
- Vertical stress at a specified rate of strain

Monotonic shear stage
Strain-controlled, drained or undrained static shear stage, in compression or extension, using either the actuator or the load frame platen.

Note: any or all of the above stages can be performed in “Automatic mode” where the test parameters are entered at the start of the test or stage and the software takes over, controlling the stages according to the pre-defined criteria.

Cyclic shear stage
A cyclic shear method can be selected from the following options:
- ASTM D5311 Load Controlled Cyclic Strength (Liquefaction Potential)
- ASTM D3999 Load Controlled Modulus & Damping Properties
- ASTM D3999 Displacement Controlled Modulus & Damping Properties
- Non Standard: single or multi cycle test
- User defined or imported wave shape
- Pre-definable stage parameters include:
  - Wave shape: sinusoidal, triangle, square, user-defined
  - Frequency
  - Peak to peak amplitude
  - Type of control (stress, strain, load, displacement)
  - End test conditions: number of cycles, pore pressure ratio, strain limits

Transducer limits
The air shut-off valve can be programmed to be activated using defined channel limits.

Calibration
Digital calibration with linear, polynomial or linearization fit methods and optional
Cyclic stage setup panel showing parameters for a non-standard test method

Transducer calibration. Calibrations can be recalled and verified

Stress-controlled cyclic shear stage. Real time measurements, compression/extension and amplitude values are displayed

Resilient modulus software package: live monitoring of the compression of the sample during the application of the pulse sequence

Young's and shear modulus are monitored during the cyclic stage

SWCC (soil-water characteristic curve) stage
Ordering information

**31-WF7005**
DYNATRIAX 50/5, PC controlled automatic dynamic triaxial system, including ±5kN double acting pneumatic actuator, 50kN cap. load triaxial frame, CDC Compact Dynamic Controller 16 channels cap., testing software and PC. 110-240 V, 50-60 Hz, 1 ph.

**31-WF7006**
DYNATRIAX 50/14, PC controlled automatic dynamic triaxial system, including ±14kN double acting pneumatic actuator, 50kN cap. load triaxial frame, CDC Compact Dynamic Controller 16 channels cap., testing software and PC. 110-240 V, 50-60 Hz, 1 ph.

**31-WF7010**
DYNATRIAX 100/5, PC controlled automatic dynamic triaxial system, including ±5kN double acting pneumatic actuator, 100kN cap. load triaxial frame, CDC Compact Dynamic Controller 16 channels cap., testing software and PC. 110-240 V, 50-60 Hz, 1 ph.

**31-WF7015**
DYNATRIAX 100/14, PC controlled automatic dynamic triaxial system, including ±14kN double acting pneumatic actuator, 100kN cap. load triaxial frame, CDC Compact Dynamic Controller 16 channels cap., testing software and PC. 110-240 V, 50-60 Hz, 1 ph.

Upgrading options

**31-WF7000/UNS**
Unsaturated soil testing package. The package includes an additional servo-valve for air pressure control, a pressure transducer, and the software to automatically perform the test stages using the axis translation method:
- Simultaneous and independent control of air pressure, cell pressure, back pressure and axial load/displacement
- Performance of soil water characteristic curve stage in addition to all the stages offered by the standard software
- Matrix suction and change in air, water and cell volume calculated for each stage.

**31-WF7000/RES**
Resilient modulus determination on compacted samples. This package provides software for performing the test according to AASHTO T307 standard, two 10 mm displacement transducers, and mounting brackets to fit the transducers to the piston of the triaxial cell.
The software includes:
- Two standard sequences of dynamic cyclic stress and static confining stress for subgrade soils and base/sub-base materials
- The possibility to set up customized sequences that the user can save and replicate automatically
- Continuous monitoring in real time of recorded and processed data of each single sequence.

Accessories

**Triaxial cell and accessories**

**Banded triaxial cell**
See pag 33

**Double wall triaxial cell**
See pag 38

Sensors

**Submersible load cell**

**31-WF7117**
Submersible load cell 5 kN

**31-WF7118**
Submersible load cell 10 kN

**31-WF7119**
Submersible load cell 25 kN

- Overload capacity: 200%
- Nominal sensitivity: 2mV/V
- Excitation voltage: 10 V DC
- Non linearity: ±0.05% full scale
- Hysteresis: 0.05% full scale
- Deflection at full load: 0.05 mm
- Maximum side force without effect: 50% full scale
- Compensated temperature range: 0 to 50°C
- Diameter: 75 mm
- Height (excluding ram): 50 mm
- Weight (excluding ram and extension kit): 850 g

**31-WF7121**
Axial displacement LVDT transducers
Capacity: ±25 mm
Input voltage: 10 V DC
Nominal sensitivity: 165 mV/mm
Linearity: 0.50%
Connector: Lumberg type, 6-pin male

**Accessories**

**31-WF7117**
Submersible load cell 5 kN

**31-WF7118**
Submersible load cell 10 kN

**31-WF7119**
Submersible load cell 25 kN

- Overload capacity: 200%
- Nominal sensitivity: 2mV/V
- Excitation voltage: 10 V DC
- Non linearity: ±0.05% full scale
- Hysteresis: 0.05% full scale
- Deflection at full load: 0.05 mm
- Maximum side force without effect: 50% full scale
- Compensated temperature range: 0 to 50°C
- Diameter: 75 mm
- Height (excluding ram): 50 mm
- Weight (excluding ram and extension kit): 850 g

**31-WF7121**
Axial displacement LVDT transducers
Capacity: ±25 mm
Input voltage: 10 V DC
Nominal sensitivity: 165 mV/mm
Linearity: 0.50%
Connector: Lumberg type, 6-pin male

**31-WF7117**
Submersible load cell 5 kN

**31-WF7118**
Submersible load cell 10 kN

**31-WF7119**
Submersible load cell 25 kN

- Overload capacity: 200%
- Nominal sensitivity: 2mV/V
- Excitation voltage: 10 V DC
- Non linearity: ±0.05% full scale
- Hysteresis: 0.05% full scale
- Deflection at full load: 0.05 mm
- Maximum side force without effect: 50% full scale
- Compensated temperature range: 0 to 50°C
- Diameter: 75 mm
- Height (excluding ram): 50 mm
- Weight (excluding ram and extension kit): 850 g

**31-WF7121**
Axial displacement LVDT transducers
Capacity: ±25 mm
Input voltage: 10 V DC
Nominal sensitivity: 165 mV/mm
Linearity: 0.50%
Connector: Lumberg type, 6-pin male
Pressure transducers with de-airing block

**28-WF6300**
Pressure transducers 1000 kPa

**28-WF6310**
De-airing block for pressure transducer, for banded triaxial cell
See pag 45

### Pressure system

**Water distribution panel**

**31-WF4335**
Two pressure lines, complete with digital gauge and hand pump to build-up pressure*
- Dimensions: 605 x 270 x 500 mm (w x d x h)
- Weight: 8.5 kg (approx.)

*If the laboratory is already equipped with a pressure system, the model 28-WF4334 may be used as an alternative.

See page 58

### Air compressor

**86-D2015/A**
Used to supply the dynamic triaxial system and the air/water pressure system with compressed air.
- Maximum pressure: 10 bar
- Maximum pressure (continuous use): 8 bar
- Tank capacity: 200 l
- Air flow: 33.4 m³/h
- Power rating: 4 kW
- Power supply: 400 V, 50 Hz, 3 ph (for 220 V, 60 Hz, 3 ph ask for 86-D2015/AZ model)
- Overall dimensions:
  - 1600 x 500 x 1050 mm (w x d x h)
- Weight: 125 kg (approx.)

### Air treatment unit

**86-D2019**
Using this dryer ensures the production of clean and dry, high quality air, which is essential for preserving the testing system. It can be used for different applications, either as an independent unit or connected to the air compressor.
- Supplied complete with particle filter 5µm and two oil filters 1 and 0.1 µm.
- Power rating: 190 W
- Power supply: 230 V, 50-60 Hz, 1 ph (for 110 V, 60 Hz, ask for 86-D2019/Z model)
- Capacity: 900 l/min
- Pressure: 16 bar
- Overall dimensions:
  - 220 x 560 x 460 mm (w x d x h)
- Weight: 24 kg (approx.)

### De-airing water system

See pag 42

### Upgrading accessories

**Bender elements**
See pag 48

**Local strain transducers**
See pag 50

*Note: local strain transducers and bender elements require advanced kit to be fitted to the triaxial cells* see pag 35

### Volume change

**29-WF4412**
Automatic volume change device with remotely controlled flow inversion
- Capacity: 100 cc
- Accuracy: ±0.1 cc
- Maximum operating pressure: 2000 kPa
- Dimensions: W280 x H400 x D260 mm
- Weight: 9 kg

### Bladder Air/water interface

**28-WF4320**
Air/water interface up to 1000 kPa
See pag 41

**29-WF4412**

*Note: the sensors are supplied with proper in-line conditioning unit; additional sensors require new in-line conditioning unit available on request*
FACT: Fully-Automated Cyclic Triaxial

**Main features**

- Easy installation: assembled and ready to go all-in-one, streamlined instrument that’s easy to install
- Easy testing: fast and reliable results
- Precision engineered, integrated load frame for excellent sample alignment.
- Excellent waveform fidelity from the integrated acquisition and control functions
- Measure and control—axial displacement, axial load, confining pressure, back pressure, pore pressure, volume change.
- Zero friction and no need for shaft bushes because the shaft is integrated into the cell
- Lightweight acrylic cell wall for improved specimen loading, less specimen disturbance and provides unobstructed specimen viewing and safe management of cell pressure.
- Overload shut-off and protection switches that safeguard your equipment
- 4x over-sampled data acquisition for highly accurate test data
- Flash based firmware allows field updates of all modules
- Communicate via Ethernet or USB
- Optional: on-specimen axial displacement x2, on-specimen circumferential, mid-height pore pressure

**FACT - Fully Automated Cyclic Triax**

FACT is an all-in-one, streamlined instrument that’s easy to install:
- Totally integrated system, ready to install straightout of the box
- Delivered fully plumbed and therefore easy to set-up, clean and service
- Internal vacuum generator for ease and simplicity
- Computer is conveniently pre-loaded with software applications
- Compact design, on wheels, for easy positioning in your laboratory

Controlling FACT is IPC Global’s Integrated Multi-Axis Control System (IMACS). IMACS delivers leading edge performance, unparalleled control and the ultimate in flexible data acquisition.

For servo-controlled testing machines, the IMACS provides excellent waveform fidelity from integrated channel acquisition and control functions simultaneously on all channels.

**Standards**

ASTM D5311 | ASTM D3999 | ASTM D4746 | AASHTO T0307 | BS 1377:8

**FACT includes:**
- Integrated Control & Data Acquisition System (IMACS)
- Integrated Reaction Frame
- Lightweight acrylic triaxial cell
- 11kN servo-pneumatic actuator assembly
- Pneumatic reservoir assembly
- Submersible Load cell (±12kN) w/ In-Line Conditioner (ILC) & Shaft
- Vertical LVDT (±25mm) w/ In-Line Conditioner (ILC)
- Pressure Transducer (1000kPa)
- Control Panel Assembly
- Combined pressure/volume-change apparatus
- Cabinet assembly c/w water/vacuum distribution panel
- Vacuum platen kit
- Compressed air gun cleaning assembly
- UTS software
**Technical specification**

- Maximum axial loading: 11 kN*
- Load Cell: 25 kN Submersible
- Ram Displacement: 50 mm
- Cell Dimensions:
  240 mm I.D. x 415 mm High
- Specimen sizes: 38/50/70/100 mm diameter (Other sizes available)
- Maximum test application frequency
  Typically 5 Hz
- Maximum dynamic cell pressure
  Frequency 1 Hz
- Cell Pressure up to 1000 kPa*
- Back Pressure up to 1000 kPa*
- Control Modes Force/Stress/Displacement & Strain
- Reaction Frame 3 Integrated internal columns
- Dimensions: 1370 x 630 x 1140 mm
  (h x d x w)
- Weight: 165 kg
- Power supply:
  110 V/240 V, 50-60 Hz, 1 ph.
- Operating Environment 5° C to 30° C

* Load and pressure achievable with 10 bar compressed air supply

---

**Software**

IPC Global’s UTS software is purpose built and draws upon over 30 years of advanced materials testing experience. IPC Global’s test and control software (UTS) is known for its simplicity in use, clarity of results and analytical power. UTS allows for real time graphing of results and configurable real time transducer levels screen, as well as customizable test templates to streamline the testing process.

**Floating Ram**

**TUNING PARAMETERS** Easy to navigate menus to allow you to set up your test parameters with minimal hassle.

**APPLY SIGNATURE AS CYCLIC SHEAR PARAMETERS** simulate real world events from violent earth-quakes to sedate ocean waves.

---

For more details about technical features and ordering information contact Controls Group
Resonant Column

Resonant Column combines the features of both resonant column and torsional shear into a single unit, including a current-driven motor to apply torsional load to the sample, a series of transducers with signal conditioning, a cell and back pressure electro-pneumatic control system and a data logger.

In the Resonant Column test a cylindrical soil specimen is restrained at the bottom and dynamically excited at the top. The torsional force at the top is generated using an electrical motor constituting eight drive coils encircling four magnets attached to a drive plate. The generated frequency is up to 300 Hz. The fundamental mode of vibration is determined from the maximum amplitude of motion; from the resonant frequency, shear wave velocity and shear wave modulus are calculated using elasticity theory. The corresponding shear strain is evaluated from the motion amplitude. Material damping can be determined from the half-power bandwidth or from a free-vibration decay curve, which is generated by shutting off the driving power.

In the Torsional Shear test the soil specimen is deformed cyclically at a low frequency (a maximum of 10 Hz), whilst continuously monitoring torque and deformation. From the torque-deformation curves, a relationship between average shear stress and average shear strain is obtained, which in turn provides the shear modulus and the damping ratio.

**Standards** ASTM D4015

**31-WF8500**

Resonant column, combined resonant column/torsional shear device

for the automatic determination of damping ratio from “half power bandwidth” and free vibration decay method 110-220V, 50-60 Hz, 1 ph.

Resonant Column combines the features of both resonant column and torsional shear into a single unit, including a current-driven motor to apply torsional load to the sample, a series of transducers with signal conditioning, a cell and back pressure electro-pneumatic control system and a data logger.

In the Resonant Column test a cylindrical soil specimen is restrained at the bottom and dynamically excited at the top. The torsional force at the top is generated using an electrical motor constituting eight drive coils encircling four magnets attached to a drive plate. The generated frequency is up to 300 Hz. The fundamental mode of vibration is determined from the maximum amplitude of motion; from the resonant frequency, shear wave velocity and shear wave modulus are calculated using elasticity theory. The corresponding shear strain is evaluated from the motion amplitude. Material damping can be determined from the half-power bandwidth or from a free-vibration decay curve, which is generated by shutting off the driving power.

In the Torsional Shear test the soil specimen is deformed cyclically at a low frequency (a maximum of 10 Hz), whilst continuously monitoring torque and deformation. From the torque-deformation curves, a relationship between average shear stress and average shear strain is obtained, which in turn provides the shear modulus and the damping ratio.
**Saturation stage**
During the saturation stage, small amounts of cell and back pressure are applied in steps, causing the air in the pore spaces to dissolve. A control system generates both cell and back pressures using air/water interfaces. Cell, back and pore pressures are measured by 1000 kPa capacity pressure transducers to an accuracy of 0.1 kPa. Volume change is measured by a high-sensitivity volume change apparatus that consists of a piston connected to a ±12.5 mm LVDT transducer sealed against a precision-machined calibration chamber with 40 cc capacity and 0.2% accuracy.

**Consolidation stage**
The sample is subjected to the same back pressure used during the last saturation step while the cell pressure depends on the effective stress required for the next stage. The consolidation stage is considered completed when pore water pressure is completely dissipated and volume change is negligible. During this stage the axial compression is measured using a LVDT transducer with ±12.5 mm travel.

RC and TS tests are usually performed under undrained conditions, closing the drainage lines and measuring changes in pore water pressure.

**Resonant Column test (RC)**
A signal generator supplies a sinusoidal voltage to the driving amplifier and a proportional current to the coils attached to the cell body. The magnetic field in the coils interacts with the magnets attached to the driving plate which, in turn, conveys a torsional oscillation to the top of the specimen. As the frequency of the input signal varies, the dynamic response of the specimen results in a varying motion amplitude. The amplitude is captured either by an accelerometer attached to the driving plate or by proximity displacement transducers measuring the movement of the driving plate relative to the coils. The frequency that maximizes the motion of the top of the specimen is associated with the first-mode resonance and is determined by applying an input signal with a frequency sweep. The secant shear modulus of the soil can be evaluated from the resonant frequency. The damping ratio can be evaluated by two methods:
- in the domain of frequency, from the complete frequency response of the soil specimen (half-power bandwidth);
- in the domain of time, from a free-vibration decay curve that is generated by shutting off the driving power (logarithmic decrement method).

The half-power bandwidth is defined as the width of the peak, where the magnitude of the frequency response function is $1/\sqrt{2}$ times the peak value. In the logarithmic decrement method, the free vibration displacement amplitude history of the soil specimen to an impulse is measured and recorded. A typical free decay curve is shown below. Logarithmic decrement is the natural logarithmic value of the ratio of two adjacent values.

At a given effective stress, RC tests are repeated several times, progressively increasing the amplitude of the input voltage, thus obtaining the secant shear modulus and the damping ratio corresponding to increasing shear strain values.

**Torsional Shear test (TS)**
A sinusoidal current is applied to the coils in a quasi-static condition and the motion of the top of the specimen is monitored using the proximity displacement transducers. The input current (proportional to the shear stress) and the corresponding torsional rotation (proportional to the shear strain) are simultaneously recorded. The shear modulus of the soil is determined from the average slope of the stress-strain loops, while material damping is related to the area of the hysteresis loop.

At a given effective stress, TS tests are repeated several times, progressively increasing the amplitude of the input voltage, thus obtaining the secant shear modulus and the damping ratio corresponding to increasing values of the shear strain.
The system consists of the following components:

**Triaxial cell**
Aluminum cell with stainless steel columns and acrylic transparent cylinder with 170 mm int. dia. x 200 mm ext. dia., including channels for bottom drainage; internal floating frame for assembling the electrical motor that applies the torsional loads; this motor has four NeFeB 10 x 25 x 40 mm magnets and eight coils.

Test accessories for 50 mm (or 38 mm available on request) dia. specimens:
- n°2 calibration bars kit + n°1 calibration weight.

**Main control box, PC and software**
Compact unit connected to PC contains all control, power supply and electrical and pneumatic devices. This system contains also the air actuators (I/P converters) and the amplification equipment.

**Sensor kit containing:**
Axial LVDT transducer, volume change apparatus, three Pressure transducers, two Eddy current displacement sensors (with miniaturized driving system), MEMS accelerometer.

**Technical specification**
- Maximum torque: 1.2 Nm
- Maximum angular deformation: 10°
- Maximum cell and back pressure: 1 MPa.
- 8 channels signal conditioning unit
- USB data acquisition and signal generation board
- Two electro-pneumatic converters for cell and back pressure
- Excitation frequency: Dynamic (RC) 1-300 Hz; Cyclic (TS) from 0 to 50 Hz maximum
- Dimension: Control Box 51x45 x 35 cm (h x w x d); Cell 55 cm x 27 cm (h x diam.)
- Weight: approx 50 kg

**Accessories**
- **28-WF4051/A** Membrane stretcher for 50 mm diameter samples.
- **28-WF4051/B** 0-ring placing tool for 50 mm diameter samples.
- **28-WF4055** Rubber membranes for 50 mm diameter samples (pack of 10).
- **28-WF4056** 0-ring for 50 mm diameter samples.
- **28-WF4051/E** Lateral filter drains (pack of 50).
- **31-WF4051/H1** Two-part split former for 50 mm diameter samples with vacuum attachment.
- **28-WF4051/G** Hand sampler complete of cutter, wooden dolly and receiver for 50 mm samples.

**Air compressor**
- **28-WF2016/A** Air compressor; 10 bar maximum working pressure (8 bar continuous), output 234 l/min, 100 l receiver, 230 V, 50 Hz, 1 ph. (110 V, 60 Hz, 1 ph; 220 V, 60 Hz, 1 ph models are available on request)

**De-airing water system**
- See pag 84

**Software**
- Resonant Column “steady-state”
- Resonant Column “free decay”
- Torsional Shear: application of the cyclic torque
Cyclic simple shear

**31-WF7500**

**Cyclic Simple Shear machine**

PC controlled, with IMACS, fitted in cabinet, including adapters for 70mm samples. 110-220V 50-60 Hz 1ph.

The cyclic simple shear apparatus is generally used for research as it can quite easily simulate many different field loading conditions in order to investigate the dynamic behaviour of soils, such as:

- Stability during seismic events of submerged slopes on the continental shelf characterized by layered clays
- Degradation of shear stress in cohesive soils under cyclic loading
- Evaluation of the liquefaction parameters of non-cohesive soils under cyclic loading

The cyclic simple shear is a plane strain device. The shear strain is induced by lateral (horizontal) movement at the bottom of the sample relative to the top. The diameter of the sample remains constant, therefore any change in volume can only be as a result of axial (vertical) movement of the top platen.

The system is designed to allow a sample to be consolidated and sheared under drained conditions.

**Sample**

The standard sample is 70 mm diameter. The test can also be performed on 50mm diameter samples using the conversion kit 31-WF7500/1.

The sample is positioned on a pedestal with a top cap the same as a triaxial sample, and covered by a rubber membrane placed and secured with O-rings. To maintain a constant diameter (K0 conditions) the sample is laterally confined by a series of brass rings.

**Shear stage**

During shear the rings slide across each other as shown below. When the shear stage is running, the vertical height of the sample can be maintained constant by the vertical actuator in a closed loop control. Constant volume tests can therefore be performed on either dry or saturated samples, maintaining drained conditions.

---

**Main features**

- Constant diameter test performance
- The system enables performance of cyclic and monotonic simple shear tests: at constant volume with strain control, at constant vertical stress with control of shear strain, at constant vertical stress with load control and with any superimposed static shear stress
- Operating frequency up to 10 Hz (depending on test and sample conditions)
- 5kN lateral (horizontal) and axial (vertical) actuators
- 5kN load cells fitted in-line with actuators, 1 N accuracy
Cyclic simple shear

Here below a general description of main components of the system:

**Simple shear machine**
The base machine consists of a simple shear load frame, an air receiver with axial (vertical) and lateral (horizontal) loading control valves and two 5 kN actuators, built into a specially designed floor-mounted cabinet, which also houses the IMACS and the PC. The axial and lateral actuators are fixed to the load frame, which supplies the reaction to the forces applied. Each actuator has an internal displacement transducer, which relays the actuator piston position back to the computer. This is very important when setting up a sample; it allows you to set enough travel for the test duration.

The top half of the area where the sample is set up is rigidly fixed and houses a 50 mm diameter vertical ram in a linear bearing to allow axial movement but prevent lateral movement. The bottom half is mounted on roller bearings in the same way as in a standard shear box apparatus.

**Integrated Multi-Axis Control System (IMACS)**
The IMACS is a compact self-contained unit that provides all critical control, timing and data acquisition functions for the test and the transducers.

The data acquisition module has six normalized (±10 V range) transducer input channels. These channels are digitized by accurate, high speed 20-bit (A/D) converters for data analysis and presentation.

The control module has four channels for feedback control. Two are dedicated to the actuator for axial load/displacement, the other two are dedicated to the application of the lateral load/displacement.

Both modules have their own dedicated high speed USB 10 b/s or RS232 interface. This allows uninterrupted, simultaneous communication, enabling increased speed of cooperation and flexibility.

Supervised by the PC, the IMACS automatically controls the loading operation for individual types of test. The IMACS directly controls the servo-valve to apply the requested loading rate or waveform. While the specimen is being subjected to loading forces, the IMACS captures data from the transducers and transfers these, via the USB or RS232 link, to the PC for processing, display and storage.

**Load cells**
Two 5 kN load cells are assembled in-line with the axial and lateral actuators. They are fitted with a signal conditioning pod, allowing the transducers to be changed or moved within the data acquisition system without the need to be recalibrated. Accurate to 1 N.

**Displacement transducer**
A transducer with ±25 mm travel is built into each actuator to measure the actuator position and provide feedback control. The vertical displacement transducer is calibrated over ±2.5 mm for controlling and maintaining the sample height. Accurate to 1 μm.

**In-line signal conditioning pods**
These units normalize all the transducer outputs, allowing transducers to be moved from channel to channel without the need to be recalibrated.

In summary, the system comprises the following:
- Cyclic simple shear machine with 5kN capacity lateral and axial actuators
- Accessories for sample preparation
- Load and displacement transducers
- Control and data acquisition system
- Software and PC

**Technical specifications**
- Simple shear machine: floor mounted, steel box frame including integral double-acting lateral and axial pneumatic actuators, each with a ±25 mm internal displacement transducer (accuracy: 0.01 mm). The top cap is fixed and the pedestal is mounted on roller bearings.
- Sample size: 70 mm diameter (50 mm with conversion kit)
- Maximum load: ±5 kN axial and lateral
- Operating frequency: up to 10 Hz (depending on test and sample conditions)
- Overall dimensions: 1500 x 700 x 1200 mm (w x d x h)
- Power supply: 240 or 110 V, 50-60 Hz, 1 ph
- Weight: 350 kg (approx.)

**Accessories**
- **31-WF7500/1**
  50mm diameter sample accessories including pedestal and top cap.
- **86-D2015/A**
  Air compressor, 10 bar maximum pressure, 200 L capacity, 5.5 kW, 400 V, 50 Hz, 3 ph.
- **86-D2019**
  Air treatment unit for the production of clean and dry, high quality air, comprising: particle filter 5µm and two oil filters 1 and 0.1 µm. 230 V, 50-60 Hz, 1 ph.
SOFTWARE

Consolidation stage
The consolidation stage is simply the application of a static axial loading (normal) stress to the specimen while the lateral loading (shear) axis is held stationary. Axial stress and specimen displacement (axial and lateral) data are measured over time and logged by the system. Logged data is also displayed to the operator in the form of graphs and tables as the test stage proceeds. The consolidation stage is manually terminated by the operator once consolidation of the specimen is determined to be complete.

Cyclic simple shear stage
This stage of the test applies a lateral cyclic shear force, or optionally a displacement, to the specimen, while the axial axis is either maintained at the specified stress, or optionally, the specimen height is maintained. Both axial lateral load and specimen displacement together with shear induced pore pressure* are measured for each loading cycle. Measured data is obtained from 50 sample points captured over the cycle period. This data is displayed to the operator in the form of wave shapes, graphs and tables and also logged by the system to an archive data file. The loading cycle shape is operator-selectable from pre-defined functions but may also be a user-generated shape.

Linear displacement shear stage
The linear displacement shear stage of the test applies a rate of lateral shear displacement to the specimen. Both axial, lateral load and specimen displacement, together with shear induced pore pressure* are measured for each loading cycle. Measured data is displayed to the operator in the form of graphs and tables and also logged by the system to an archive data file.

General test setup
The setup stage of the software allows you to select the type of test parameters you wish to use, for example: consolidation stage axial stress; shear stage under axial stress or constant height control; cyclic shear stage lateral axis under load or displacement control with choice of wave shape; rate of shear; test termination on cycle counts or percent axial strain.

*Since the pore pressure is zero through shear, the shear induced pore pressure is calculated using the assumption that the change in normal stress is equal to the change in effective stress and assumed to be equal to the change in pore water pressure that would occur in a sealed specimen confined by a constant total stress.
In line with its continual program of product research and development, CONTROLS S.R.L. reserves the right to alter specifications for equipment at any time.